2ara: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==APO FORM OF ESCHERICHIA COLI REGULATORY PROTEIN ARAC== | ||
<StructureSection load='2ara' size='340' side='right'caption='[[2ara]], [[Resolution|resolution]] 2.80Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2ara]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ARA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ARA FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ara FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ara OCA], [https://pdbe.org/2ara PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ara RCSB], [https://www.ebi.ac.uk/pdbsum/2ara PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ara ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ARAC_ECOLI ARAC_ECOLI] This protein controls the expression of at least six genes that are involved in the transport and catabolism of L-arabinose. It regulates initiation of transcription of the araBAD operon and it also controls its own synthesis. The L-arabinose operon displays both positive and negative regulation through AraC. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ar/2ara_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2ara ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structure of the arabinose-binding and dimerization domain of the Escherchia coli gene regulatory protein AraC was determined in the presence and absence of L-arabinose. The 1.5 angstrom structure of the arabinose-bound molecule shows that the protein adopts an unusual fold, binding sugar within a beta barrel and completely burying the arabinose with the amino-terminal arm of the protein. Dimer contacts in the presence of arabinose are mediated by an antiparallel coiled-coil. In the 2.8 angstrom structure of the uncomplexed protein, the amino-terminal arm is disordered, uncovering the sugar-binding pocket and allowing it to serve as an oligomerization interface. The ligand-gated oligomerization as seen in AraC provides the basis of a plausible mechanism for modulating the protein's DNA-looping properties. | |||
Structural basis for ligand-regulated oligomerization of AraC.,Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C Science. 1997 Apr 18;276(5311):421-5. PMID:9103202<ref>PMID:9103202</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2ara" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Transcriptional activator 3D structures|Transcriptional activator 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
== | |||
< | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Soisson SM]] | ||
[[Category: | [[Category: Wolberger C]] | ||
Latest revision as of 09:41, 9 August 2023
APO FORM OF ESCHERICHIA COLI REGULATORY PROTEIN ARACAPO FORM OF ESCHERICHIA COLI REGULATORY PROTEIN ARAC
Structural highlights
FunctionARAC_ECOLI This protein controls the expression of at least six genes that are involved in the transport and catabolism of L-arabinose. It regulates initiation of transcription of the araBAD operon and it also controls its own synthesis. The L-arabinose operon displays both positive and negative regulation through AraC. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of the arabinose-binding and dimerization domain of the Escherchia coli gene regulatory protein AraC was determined in the presence and absence of L-arabinose. The 1.5 angstrom structure of the arabinose-bound molecule shows that the protein adopts an unusual fold, binding sugar within a beta barrel and completely burying the arabinose with the amino-terminal arm of the protein. Dimer contacts in the presence of arabinose are mediated by an antiparallel coiled-coil. In the 2.8 angstrom structure of the uncomplexed protein, the amino-terminal arm is disordered, uncovering the sugar-binding pocket and allowing it to serve as an oligomerization interface. The ligand-gated oligomerization as seen in AraC provides the basis of a plausible mechanism for modulating the protein's DNA-looping properties. Structural basis for ligand-regulated oligomerization of AraC.,Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C Science. 1997 Apr 18;276(5311):421-5. PMID:9103202[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|