1pwt: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==THERMODYNAMIC ANALYSIS OF ALPHA-SPECTRIN SH3 AND TWO OF ITS CIRCULAR PERMUTANTS WITH DIFFERENT LOOP LENGTHS: DISCERNING THE REASONS FOR RAPID FOLDING IN PROTEINS== | ==THERMODYNAMIC ANALYSIS OF ALPHA-SPECTRIN SH3 AND TWO OF ITS CIRCULAR PERMUTANTS WITH DIFFERENT LOOP LENGTHS: DISCERNING THE REASONS FOR RAPID FOLDING IN PROTEINS== | ||
<StructureSection load='1pwt' size='340' side='right' caption='[[1pwt]], [[Resolution|resolution]] 1.77Å' scene=''> | <StructureSection load='1pwt' size='340' side='right'caption='[[1pwt]], [[Resolution|resolution]] 1.77Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1pwt]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1pwt]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PWT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PWT FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.77Å</td></tr> | ||
<table> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pwt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pwt OCA], [https://pdbe.org/1pwt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pwt RCSB], [https://www.ebi.ac.uk/pdbsum/1pwt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pwt ProSAT]</span></td></tr> | ||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SPTN1_CHICK SPTN1_CHICK] Morphologically, spectrin-like proteins appear to be related to spectrin, showing a flexible rod-like structure. They can bind actin but seem to differ in their calmodulin-binding activity. In nonerythroid tissues, spectrins, in association with some other proteins, may play an important role in membrane organization. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pw/1pwt_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pw/1pwt_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pwt ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 23: | Line 27: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1pwt" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Spectrin|Spectrin]] | *[[Spectrin 3D structures|Spectrin 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 31: | Line 36: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Gallus gallus]] | [[Category: Gallus gallus]] | ||
[[Category: Berisio | [[Category: Large Structures]] | ||
[[Category: Filmonov | [[Category: Berisio R]] | ||
[[Category: Martinez | [[Category: Filmonov VV]] | ||
[[Category: Mateo | [[Category: Martinez JC]] | ||
[[Category: Serrano | [[Category: Mateo PL]] | ||
[[Category: Viguera | [[Category: Serrano L]] | ||
[[Category: Wilmanns | [[Category: Viguera AR]] | ||
[[Category: Wilmanns M]] | |||
Latest revision as of 09:32, 9 August 2023
THERMODYNAMIC ANALYSIS OF ALPHA-SPECTRIN SH3 AND TWO OF ITS CIRCULAR PERMUTANTS WITH DIFFERENT LOOP LENGTHS: DISCERNING THE REASONS FOR RAPID FOLDING IN PROTEINSTHERMODYNAMIC ANALYSIS OF ALPHA-SPECTRIN SH3 AND TWO OF ITS CIRCULAR PERMUTANTS WITH DIFFERENT LOOP LENGTHS: DISCERNING THE REASONS FOR RAPID FOLDING IN PROTEINS
Structural highlights
FunctionSPTN1_CHICK Morphologically, spectrin-like proteins appear to be related to spectrin, showing a flexible rod-like structure. They can bind actin but seem to differ in their calmodulin-binding activity. In nonerythroid tissues, spectrins, in association with some other proteins, may play an important role in membrane organization. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe temperature dependences of the unfolding-refolding reaction of a shorter version of the alpha-spectrin SH3 domain (PWT) used as a reference and of two circular permutants (with different poly-Gly loop lengths at the newly created fused loop) have been measured by differential scanning microcalorimetry and stopped-flow kinetics, to characterize the thermodynamic nature of the transition and native states. Differential scanning calorimetry results show that all these species do not belong to the same temperature dependency of heat effect. The family of the N47-D48s circular permutant (with 0-6 Gly inserted at the fused-loop) shows a higher enthalpy as happens with the PWT domain. The wild type (WT) and the S19-P20s permutant family have a more similar behavior although the second is far less stable. The crystallographic structure of the PWT shows a hairpin formation in the region corresponding to the unstructured N-terminus tail of the WT, explaining the enthalpic difference. There is a very good correlation between the calorimetric changes and the structural differences between the WT, PWT, and two circular permutants that suggests that their unfolded state cannot be too different. Elongation of the fused loop in the two permutants, taking as a reference the protein with one inserted Gly, results in a small Gibbs energy change of entropic origin as theoretically expected. Eyring plots of the unfolding and refolding semireactions show different behaviors for PWT, S19-P20s, and N47-D48s in agreement with previous studies indicating that they have different transition states. The SH3 transition state is relatively close to the native state with regard to changes in heat capacity and entropy, indicating a high degree of compactness and order. Regarding the differences in thermodynamic parameters, it seems that rapid folding could be achieved in proteins by decreasing the entropic barrier. Thermodynamic analysis of alpha-spectrin SH3 and two of its circular permutants with different loop lengths: discerning the reasons for rapid folding in proteins.,Martinez JC, Viguera AR, Berisio R, Wilmanns M, Mateo PL, Filimonov VV, Serrano L Biochemistry. 1999 Jan 12;38(2):549-59. PMID:9888794[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|