9dq3

From Proteopedia
Jump to navigation Jump to search

Crystal structure of engineered Ipilimumab (mipi.4) Fab in complex with human CTLA-4Crystal structure of engineered Ipilimumab (mipi.4) Fab in complex with human CTLA-4

Structural highlights

9dq3 is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.64Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CTLA4_HUMAN Genetic variation in CTLA4 influences susceptibility to systemic lupus erythematosus (SLE) [MIM:152700. SLE is a chronic, inflammatory and often febrile multisystemic disorder of connective tissue. It affects principally the skin, joints, kidneys and serosal membranes. SLE is thought to represent a failure of the regulatory mechanisms of the autoimmune system.[1] Note=Genetic variations in CTLA4 may influence susceptibility to Graves disease, an autoimmune disorder associated with overactivity of the thyroid gland and hyperthyroidism.[2] Genetic variation in CTLA4 is the cause of susceptibility to diabetes mellitus insulin-dependent type 12 (IDDM12) [MIM:601388. A multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.[3] [4] Genetic variation in CTLA4 is the cause of susceptibility to celiac disease type 3 (CELIAC3) [MIM:609755. It is a multifactorial disorder of the small intestine that is influenced by both environmental and genetic factors. It is characterized by malabsorption resulting from inflammatory injury to the mucosa of the small intestine after the ingestion of wheat gluten or related rye and barley proteins. In its classic form, celiac disease is characterized in children by malabsorption and failure to thrive.

Function

CTLA4_HUMAN Inhibitory receptor acting as a major negative regulator of T-cell responses. The affinity of CTLA4 for its natural B7 family ligands, CD80 and CD86, is considerably stronger than the affinity of their cognate stimulatory coreceptor CD28.[5] [6]

Publication Abstract from PubMed

Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used. The antibody 9D9, which binds mouse CTLA-4, is a commonly used surrogate for CTLA-4 checkpoint blockade studies in mouse cancer models. In this work, we reveal that 9D9 has significant biophysical dissimilarities to therapeutic CTLA-4 antibodies. The 9D9-mCTLA4 complex crystal structure was determined and shows that the surrogate antibody binds an epitope distinct from ipilimumab and tremelimumab. In addition, while ipilimumab has pH-independent binding to hCTLA-4, 9D9 loses binding to mCTLA-4 at physiologically relevant acidic pH ranges. We used phage and yeast display to engineer ipilimumab to bind mouse CTLA-4 with single-digit nM affinity from an initial state with no apparent binding. The engineered variants showed pH-independent and cross-reactive binding to both mouse and human CTLA-4. Crystal structures of a variant in complex with both mouse and human CTLA-4 confirmed that it targets an equivalent epitope as ipilimumab. These cross-reactive ipilimumab variants may facilitate improved translatability and future mechanism-of-action studies for anti-CTLA-4 targeting in murine models.

Engineered ipilimumab variants that bind human and mouse CTLA-4.,Robison B, Diong SJ, Kumar A, Moon TM, Chang O, Chau B, Bee C, Barman I, Rajpal A, Korman AJ, West S, Strop P, Lee PS MAbs. 2025 Dec;17(1):2451296. doi: 10.1080/19420862.2025.2451296. Epub 2025 Jan , 24. PMID:39849917[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Chistyakov DA, Savost'anov KV, Turakulov RI, Petunina NA, Trukhina LV, Kudinova AV, Balabolkin MI, Nosikov VV. Complex association analysis of graves disease using a set of polymorphic markers. Mol Genet Metab. 2000 Jul;70(3):214-8. PMID:10924276 doi:10.1006/mgme.2000.3007
  2. Chistyakov DA, Savost'anov KV, Turakulov RI, Petunina NA, Trukhina LV, Kudinova AV, Balabolkin MI, Nosikov VV. Complex association analysis of graves disease using a set of polymorphic markers. Mol Genet Metab. 2000 Jul;70(3):214-8. PMID:10924276 doi:10.1006/mgme.2000.3007
  3. Chistyakov DA, Savost'anov KV, Turakulov RI, Petunina NA, Trukhina LV, Kudinova AV, Balabolkin MI, Nosikov VV. Complex association analysis of graves disease using a set of polymorphic markers. Mol Genet Metab. 2000 Jul;70(3):214-8. PMID:10924276 doi:10.1006/mgme.2000.3007
  4. Marron MP, Raffel LJ, Garchon HJ, Jacob CO, Serrano-Rios M, Martinez Larrad MT, Teng WP, Park Y, Zhang ZX, Goldstein DR, Tao YW, Beaurain G, Bach JF, Huang HS, Luo DF, Zeidler A, Rotter JI, Yang MC, Modilevsky T, Maclaren NK, She JX. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum Mol Genet. 1997 Aug;6(8):1275-82. PMID:9259273
  5. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991 Sep 1;174(3):561-9. PMID:1714933
  6. Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol. 2006;24:65-97. PMID:16551244 doi:10.1146/annurev.immunol.24.021605.090535
  7. Robison B, Diong SJ, Kumar A, Moon TM, Chang O, Chau B, Bee C, Barman I, Rajpal A, Korman AJ, West S, Strop P, Lee PS. Engineered ipilimumab variants that bind human and mouse CTLA-4. MAbs. 2025 Dec;17(1):2451296. PMID:39849917 doi:10.1080/19420862.2025.2451296

9dq3, resolution 1.64Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA