8tvr

From Proteopedia
Jump to navigation Jump to search

In situ cryo-EM structure of bacteriophage P22 tail hub protein: tailspike protein complex at 2.8A resolutionIn situ cryo-EM structure of bacteriophage P22 tail hub protein: tailspike protein complex at 2.8A resolution

Structural highlights

8tvr is a 24 chain structure with sequence from Salmonella virus P22. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.8Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FIBER_BPP22 Structural component of the short non-contractile tail. The tail comprises six fibers that mediate primary attachment to the host cell lipopolysaccharides (LPS) and display endorhamnosidase enzymatic activity, hydrolyzing the alpha-1,3-O-glycosidic linkage between rhamnose and galactose of the O-antigen polysaccharide. Digestion of the LPS brings the capsid near the cell outer membrane.[1] [2]

Publication Abstract from PubMed

Bacteriophage P22 is a prototypical member of the Podoviridae superfamily. Since its discovery in 1952, P22 has become a paradigm for phage transduction and a model for icosahedral viral capsid assembly. Here, we describe the complete architecture of the P22 tail apparatus (gp1, gp4, gp10, gp9, and gp26) and the potential location and organization of P22 ejection proteins (gp7, gp20, and gp16), determined using cryo-EM localized reconstruction, genetic knockouts, and biochemical analysis. We found that the tail apparatus exists in two equivalent conformations, rotated by approximately 6 degrees relative to the capsid. Portal protomers make unique contacts with coat subunits in both conformations, explaining the 12:5 symmetry mismatch. The tail assembles around the hexameric tail hub (gp10), which folds into an interrupted beta-propeller characterized by an apical insertion domain. The tail hub connects proximally to the dodecameric portal protein and head-to-tail adapter (gp4), distally to the trimeric tail needle (gp26), and laterally to six trimeric tailspikes (gp9) that attach asymmetrically to gp10 insertion domain. Cryo-EM analysis of P22 mutants lacking the ejection proteins gp7 or gp20 and biochemical analysis of purified recombinant proteins suggest that gp7 and gp20 form a molecular complex associated with the tail apparatus via the portal protein barrel. We identified a putative signal transduction pathway from the tailspike to the tail needle, mediated by three flexible loops in the tail hub, that explains how lipopolysaccharide (LPS) is sufficient to trigger the ejection of the P22 DNA in vitro.

Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery.,Iglesias SM, Lokareddy RK, Yang R, Li F, Yeggoni DP, David Hou CF, Leroux MN, Cortines JR, Leavitt JC, Bird M, Casjens SR, White S, Teschke CM, Cingolani G J Mol Biol. 2023 Nov 10;435(24):168365. doi: 10.1016/j.jmb.2023.168365. PMID:37952769[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Weigele PR, Scanlon E, King J. Homotrimeric, beta-stranded viral adhesins and tail proteins. J Bacteriol. 2003 Jul;185(14):4022-30. PMID:12837775
  2. Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem. 2010 Nov 19;285(47):36768-75. doi: 10.1074/jbc.M110.169003. Epub, 2010 Sep 3. PMID:20817910 doi:http://dx.doi.org/10.1074/jbc.M110.169003
  3. Iglesias SM, Lokareddy RK, Yang R, Li F, Yeggoni DP, David Hou CF, Leroux MN, Cortines JR, Leavitt JC, Bird M, Casjens SR, White S, Teschke CM, Cingolani G. Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery. J Mol Biol. 2023 Nov 10;435(24):168365. PMID:37952769 doi:10.1016/j.jmb.2023.168365

8tvr, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA