8qhf

From Proteopedia
Jump to navigation Jump to search

Corynebacterium glutamicum mycoloyltransferase C acyl-enzyme intermediateCorynebacterium glutamicum mycoloyltransferase C acyl-enzyme intermediate

Structural highlights

8qhf is a 1 chain structure with sequence from Corynebacterium glutamicum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.69Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q8NTG4_CORGL

Publication Abstract from PubMed

Protein mycoloylation is a newly characterized post-translational modification (PTM) specifically found in Corynebacteriales, an order of bacteria that includes numerous human pathogens. Their envelope is composed of a unique outer membrane, the so-called mycomembrane made of very-long chain fatty acids, named mycolic acids. Recently, some mycomembrane proteins including PorA have been unambiguously shown to be covalently modified with mycolic acids in the model organism Corynebacterium glutamicum by a mechanism that relies on the mycoloyltransferase MytC. This PTM represents the first example of protein O-acylation in prokaryotes and the first example of protein modification by mycolic acid. Through the design and synthesis of trehalose monomycolate (TMM) analogs, we prove that i) MytC is the mycoloyltransferase directly involved in this PTM, ii) TMM, but not trehalose dimycolate (TDM), is a suitable mycolate donor for PorA mycoloylation, iii) MytC is able to discriminate between an acyl and a mycoloyl chain in vitro unlike other trehalose mycoloyltransferases. We also solved the structure of MytC acyl-enzyme obtained with a soluble short TMM analogs which constitutes the first mycoloyltransferase structure with a covalently linked to an authentic mycolic acid moiety. These data highlight the great conformational flexibility of the active site of MytC during the reaction cycle and pave the way for a better understanding of the catalytic mechanism of all members of the mycoloyltransferase family including the essential Antigen85 enzymes in Mycobacteria.

Synthetic mycolates derivatives to decipher protein mycoloylation, a unique post-translational modification in bacteria.,Lesur E, Zhang Y, Dautin N, Dietrich C, Li de la Sierra-Gallay I, Augusto LA, Rollando P, Lazar N, Urban D, Doisneau G, Constantinesco-Becker F, Van Tilbeurgh H, Guianvarc'h D, Bourdreux Y, Bayan N J Biol Chem. 2025 Jan 27:108243. doi: 10.1016/j.jbc.2025.108243. PMID:39880088[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lesur E, Zhang Y, Dautin N, Dietrich C, Li de la Sierra-Gallay I, Augusto LA, Rollando P, Lazar N, Urban D, Doisneau G, Constantinesco-Becker F, Van Tilbeurgh H, Guianvarc'h D, Bourdreux Y, Bayan N. Synthetic mycolates derivatives to decipher protein mycoloylation, a unique post-translational modification in bacteria. J Biol Chem. 2025 Jan 27:108243. PMID:39880088 doi:10.1016/j.jbc.2025.108243

8qhf, resolution 2.69Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA