8p1b

From Proteopedia
Jump to navigation Jump to search

Lysozyme structure solved from serial crystallography data collected at 2 kHz with JUNGFRAU detector at MAXIVLysozyme structure solved from serial crystallography data collected at 2 kHz with JUNGFRAU detector at MAXIV

Structural highlights

8p1b is a 1 chain structure with sequence from Gallus gallus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.7Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]

Publication Abstract from PubMed

Serial and time-resolved macromolecular crystallography are on the rise. However, beam time at X-ray free-electron lasers is limited and most third-generation synchrotron-based macromolecular crystallography beamlines do not offer the necessary infrastructure yet. Here, a new setup is demonstrated, based on the JUNGFRAU detector and Jungfraujoch data-acquisition system, that enables collection of kilohertz serial crystallography data at fourth-generation synchrotrons. More importantly, it is shown that this setup is capable of collecting multiple-time-point time-resolved protein dynamics at kilohertz rates, allowing the probing of microsecond to second dynamics at synchrotrons in a fraction of the time needed previously. A high-quality complete X-ray dataset was obtained within 1 min from lysozyme microcrystals, and the dynamics of the light-driven sodium-pump membrane protein KR2 with a time resolution of 1 ms could be demonstrated. To make the setup more accessible for researchers, downstream data handling and analysis will be automated to allow on-the-fly spot finding and indexing, as well as data processing.

Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source.,Leonarski F, Nan J, Matej Z, Bertrand Q, Furrer A, Gorgisyan I, Bjelcic M, Kepa M, Glover H, Hinger V, Eriksson T, Cehovin A, Eguiraun M, Gasparotto P, Mozzanica A, Weinert T, Gonzalez A, Standfuss J, Wang M, Ursby T, Dworkowski F IUCrJ. 2023 Nov 1;10(Pt 6):729-737. doi: 10.1107/S2052252523008618. PMID:37830774[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
  2. Leonarski F, Nan J, Matej Z, Bertrand Q, Furrer A, Gorgisyan I, Bjelčić M, Kepa M, Glover H, Hinger V, Eriksson T, Cehovin A, Eguiraun M, Gasparotto P, Mozzanica A, Weinert T, Gonzalez A, Standfuss J, Wang M, Ursby T, Dworkowski F. Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source. IUCrJ. 2023 Nov 1;10(Pt 6):729-737. PMID:37830774 doi:10.1107/S2052252523008618

8p1b, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA