8gbd
Homo sapiens Zalpha mutant - P193AHomo sapiens Zalpha mutant - P193A
Structural highlights
DiseaseDSRAD_HUMAN Defects in ADAR are a cause of dyschromatosis symmetrical hereditaria (DSH) [MIM:127400; also known as reticulate acropigmentation of Dohi. DSH is a pigmentary genodermatosis of autosomal dominant inheritance characterized by a mixture of hyperpigmented and hypopigmented macules distributed on the dorsal parts of the hands and feet.[1] [2] [3] FunctionDSRAD_HUMAN Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication.[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Publication Abstract from PubMedThe Zalpha domain of ADARp150 is critical for proper Z-RNA substrate binding and is a key factor in the type-I interferon response pathway. Two point-mutations in this domain (N173S and P193A), which cause neurodegenerative disorders, are linked to decreased A-to-I editing in disease models. To understand this phenomenon at the molecular level, we biophysically and structurally characterized these two mutated domains, revealing that they bind Z-RNA with a decreased affinity. Less efficient binding to Z-RNA can be explained by structural changes in beta-wing, part of the Z-RNA-protein interface, and alteration of conformational dynamics of the proteins. Differential Structural Features of Two Mutant ADAR1p150 Zalpha Domains Associated with Aicardi-Goutieres Syndrome.,Langeberg CJ, Nichols PJ, Henen MA, Vicens Q, Vogeli B J Mol Biol. 2023 Mar 7;435(8):168040. doi: 10.1016/j.jmb.2023.168040. PMID:36889460[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|