8fcf

From Proteopedia
Jump to navigation Jump to search

Crystal structure of PLVAP CC1 in I212121 space groupCrystal structure of PLVAP CC1 in I212121 space group

Structural highlights

8fcf is a 2 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.95Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PLVAP_MOUSE Endothelial cell-specific membrane protein involved in the formation of the diaphragms that bridge endothelial fenestrae. It is also required for the formation of stomata of caveolae and transendothelial channels. Functions in microvascular permeability, endothelial fenestrae contributing to the passage of water and solutes and regulating transcellular versus paracellular flow in different organs. Plays a specific role in embryonic development.[1]

Publication Abstract from PubMed

In many organs, small openings across capillary endothelial cells (ECs) allow the diffusion of low-molecular weight compounds and small proteins between the blood and tissue spaces. These openings contain a diaphragm composed of radially arranged fibers, and current evidence suggests that a single-span type II transmembrane protein, plasmalemma vesicle-associated protein-1 (PLVAP), constitutes these fibers. Here, we present the three-dimensional crystal structure of an 89-amino acid segment of the PLVAP extracellular domain (ECD) and show that it adopts a parallel dimeric alpha-helical coiled-coil configuration with five interchain disulfide bonds. The structure was solved using single-wavelength anomalous diffraction from sulfur-containing residues (sulfur SAD) to generate phase information. Biochemical and circular dichroism (CD) experiments show that a second PLVAP ECD segment also has a parallel dimeric alpha-helical configuration-presumably a coiled coil-held together with interchain disulfide bonds. Overall, ~2/3 of the ~390 amino acids within the PLVAP ECD adopt a helical configuration, as determined by CD. We also determined the sequence and epitope of MECA-32, an anti-PLVAP antibody. Taken together, these data lend strong support to the model of capillary diaphragms formulated by Tse and Stan in which approximately ten PLVAP dimers are arranged within each 60- to 80-nm-diameter opening like the spokes of a bicycle wheel. Passage of molecules through the wedge-shaped pores is presumably determined both by the length of PLVAP-i.e., the long dimension of the pore-and by the chemical properties of amino acid side chains and N-linked glycans on the solvent-accessible faces of PLVAP.

Structural insights into plasmalemma vesicle-associated protein (PLVAP): Implications for vascular endothelial diaphragms and fenestrae.,Chang TH, Hsieh FL, Gu X, Smallwood PM, Kavran JM, Gabelli SB, Nathans J Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2221103120. doi: , 10.1073/pnas.2221103120. Epub 2023 Mar 30. PMID:36996108[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Herrnberger L, Seitz R, Kuespert S, Bösl MR, Fuchshofer R, Tamm ER. Lack of endothelial diaphragms in fenestrae and caveolae of mutant Plvap-deficient mice. Histochem Cell Biol. 2012 Nov;138(5):709-24. PMID:22782339 doi:10.1007/s00418-012-0987-3
  2. Chang TH, Hsieh FL, Gu X, Smallwood PM, Kavran JM, Gabelli SB, Nathans J. Structural insights into plasmalemma vesicle-associated protein (PLVAP): Implications for vascular endothelial diaphragms and fenestrae. Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2221103120. PMID:36996108 doi:10.1073/pnas.2221103120

8fcf, resolution 1.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA