8efs

From Proteopedia
Jump to navigation Jump to search

CryoEM of the soluble OPA1 tetramer from the apo helical assembly on a lipid membraneCryoEM of the soluble OPA1 tetramer from the apo helical assembly on a lipid membrane

Structural highlights

8efs is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 9.68Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

OPA1_HUMAN Autosomal dominant optic atrophy, classic form;Autosomal dominant optic atrophy plus syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.

Function

OPA1_HUMAN Dynamin-related GTPase that is essential for normal mitochondrial morphology by regulating the equilibrium between mitochondrial fusion and mitochondrial fission (PubMed:16778770, PubMed:17709429, PubMed:20185555, PubMed:24616225, PubMed:28746876). Coexpression of isoform 1 with shorter alternative products is required for optimal activity in promoting mitochondrial fusion (PubMed:17709429). Binds lipid membranes enriched in negatively charged phospholipids, such as cardiolipin, and promotes membrane tubulation (PubMed:20185555). The intrinsic GTPase activity is low, and is strongly increased by interaction with lipid membranes (PubMed:20185555). Plays a role in remodeling cristae and the release of cytochrome c during apoptosis (By similarity). Proteolytic processing in response to intrinsic apoptotic signals may lead to disassembly of OPA1 oligomers and release of the caspase activator cytochrome C (CYCS) into the mitochondrial intermembrane space (By similarity). Plays a role in mitochondrial genome maintenance (PubMed:20974897, PubMed:18158317).[UniProtKB:P58281][1] [2] [3] [4] [5] [6] [7] Inactive form produced by cleavage at S1 position by OMA1 following stress conditions that induce loss of mitochondrial membrane potential, leading to negative regulation of mitochondrial fusion.[8] Isoforms that contain the alternative exon 4b (present in isoform 4 and isoform 5) are required for mitochondrial genome maintenance, possibly by anchoring the mitochondrial nucleoids to the inner mitochondrial membrane.[9]

Publication Abstract from PubMed

Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases(1) are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria(2). Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes(3). Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins(4). OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.

OPA1 helical structures give perspective to mitochondrial dysfunction.,Nyenhuis SB, Wu X, Strub MP, Yim YI, Stanton AE, Baena V, Syed ZA, Canagarajah B, Hammer JA, Hinshaw JE Nature. 2023 Aug;620(7976):1109-1116. doi: 10.1038/s41586-023-06462-1. Epub 2023 , Aug 23. PMID:37612506[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ishihara N, Fujita Y, Oka T, Mihara K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006 Jul 12;25(13):2966-77. doi: 10.1038/sj.emboj.7601184. Epub 2006 Jun , 15. PMID:16778770 doi:http://dx.doi.org/10.1038/sj.emboj.7601184
  2. Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007 Aug 27;178(5):749-55. doi: 10.1083/jcb.200704110. Epub 2007 Aug, 20. PMID:17709429 doi:http://dx.doi.org/10.1083/jcb.200704110
  3. Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B, Boissiere A, Campos Y, Rivera H, de la Aleja JG, Carroccia R, Iommarini L, Labauge P, Figarella-Branger D, Marcorelles P, Furby A, Beauvais K, Letournel F, Liguori R, La Morgia C, Montagna P, Liguori M, Zanna C, Rugolo M, Cossarizza A, Wissinger B, Verny C, Schwarzenbacher R, Martin MA, Arenas J, Ayuso C, Garesse R, Lenaers G, Bonneau D, Carelli V. OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain. 2008 Feb;131(Pt 2):338-51. doi: 10.1093/brain/awm298. Epub 2007 Dec 24. PMID:18158317 doi:http://dx.doi.org/10.1093/brain/awm298
  4. Ban T, Heymann JA, Song Z, Hinshaw JE, Chan DC. OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet. 2010 Jun 1;19(11):2113-22. doi: 10.1093/hmg/ddq088. Epub 2010 Feb , 25. PMID:20185555 doi:http://dx.doi.org/10.1093/hmg/ddq088
  5. Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, Olichon A, Loiseau D, Reynier P, Chinnery PF, Rotig A, Carelli V, Hamel CP, Rugolo M, Lenaers G. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 2011 Jan;21(1):12-20. doi: 10.1101/gr.108696.110. Epub 2010 Oct 25. PMID:20974897 doi:http://dx.doi.org/10.1101/gr.108696.110
  6. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014 Mar 17;204(6):919-29. doi: 10.1083/jcb.201308006. Epub 2014 Mar, 10. PMID:24616225 doi:http://dx.doi.org/10.1083/jcb.201308006
  7. Huang G, Massoudi D, Muir AM, Joshi DC, Zhang CL, Chiu SY, Greenspan DS. WBSCR16 Is a Guanine Nucleotide Exchange Factor Important for Mitochondrial Fusion. Cell Rep. 2017 Jul 25;20(4):923-934. doi: 10.1016/j.celrep.2017.06.090. PMID:28746876 doi:http://dx.doi.org/10.1016/j.celrep.2017.06.090
  8. Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol. 2009 Dec 28;187(7):959-66. doi: 10.1083/jcb.200906083. PMID:20038677 doi:http://dx.doi.org/10.1083/jcb.200906083
  9. Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, Olichon A, Loiseau D, Reynier P, Chinnery PF, Rotig A, Carelli V, Hamel CP, Rugolo M, Lenaers G. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 2011 Jan;21(1):12-20. doi: 10.1101/gr.108696.110. Epub 2010 Oct 25. PMID:20974897 doi:http://dx.doi.org/10.1101/gr.108696.110
  10. Nyenhuis SB, Wu X, Strub MP, Yim YI, Stanton AE, Baena V, Syed ZA, Canagarajah B, Hammer JA, Hinshaw JE. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature. 2023 Aug;620(7976):1109-1116. PMID:37612506 doi:10.1038/s41586-023-06462-1

8efs, resolution 9.68Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA