7vr1

From Proteopedia
Jump to navigation Jump to search

Cryo-EM structure of the ATP-binding cassette sub-family D member 1 from Homo sapiensCryo-EM structure of the ATP-binding cassette sub-family D member 1 from Homo sapiens

Structural highlights

7vr1 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.4Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ABCD1_HUMAN X-linked cerebral adrenoleukodystrophy;Adrenomyeloneuropathy;CADDS. The disease is caused by variants affecting the gene represented in this entry. The promoter region of ABCD1 is deleted in the chromosome Xq28 deletion syndrome which involves ABCD1 and the neighboring gene BCAP31.[1]

Function

ABCD1_HUMAN ATP-dependent transporter of the ATP-binding cassette (ABC) family involved in the transport of very long chain fatty acid (VLCFA)-CoA from the cytosol to the peroxisome lumen (PubMed:11248239, PubMed:15682271, PubMed:16946495, PubMed:18757502, PubMed:21145416, PubMed:23671276, PubMed:29397936, PubMed:33500543). Coupled to the ATP-dependent transporter activity has also a fatty acyl-CoA thioesterase activity (ACOT) and hydrolyzes VLCFA-CoA into VLCFA prior their ATP-dependent transport into peroxisomes, the ACOT activity is essential during this transport process (PubMed:33500543, PubMed:29397936). Thus, plays a role in regulation of VLCFAs and energy metabolism namely, in the degradation and biosynthesis of fatty acids by beta-oxidation, mitochondrial function and microsomal fatty acid elongation (PubMed:23671276, PubMed:21145416). Involved in several processes; namely, controls the active myelination phase by negatively regulating the microsomal fatty acid elongation activity and may also play a role in axon and myelin maintenance. Controls also the cellular response to oxidative stress by regulating mitochondrial functions such as mitochondrial oxidative phosphorylation and depolarization. And finally controls the inflammatory response by positively regulating peroxisomal beta-oxidation of VLCFAs (By similarity).[UniProtKB:P48410][2] [3] [4] [5] [6] [7] [8] [9]

References

  1. Corzo D, Gibson W, Johnson K, Mitchell G, LePage G, Cox GF, Casey R, Zeiss C, Tyson H, Cutting GR, Raymond GV, Smith KD, Watkins PA, Moser AB, Moser HW, Steinberg SJ. Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: a novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet. 2002 Jun;70(6):1520-31. Epub 2002 Apr 29. PMID:11992258 doi:http://dx.doi.org/S0002-9297(07)60704-6
  2. Roerig P, Mayerhofer P, Holzinger A, Gartner J. Characterization and functional analysis of the nucleotide binding fold in human peroxisomal ATP binding cassette transporters. FEBS Lett. 2001 Mar 9;492(1-2):66-72. doi: 10.1016/s0014-5793(01)02235-9. PMID:11248239 doi:http://dx.doi.org/10.1016/s0014-5793(01)02235-9
  3. Guimaraes CP, Sa-Miranda C, Azevedo JE. Probing substrate-induced conformational alterations in adrenoleukodystrophy protein by proteolysis. J Hum Genet. 2005;50(2):99-105. doi: 10.1007/s10038-004-0226-4. Epub 2005 Jan 29. PMID:15682271 doi:http://dx.doi.org/10.1007/s10038-004-0226-4
  4. Morita M, Kurisu M, Kashiwayama Y, Yokota S, Imanaka T. ATP-binding and -hydrolysis activities of ALDP (ABCD1) and ALDRP (ABCD2), human peroxisomal ABC proteins, overexpressed in Sf21 cells. Biol Pharm Bull. 2006 Sep;29(9):1836-42. doi: 10.1248/bpb.29.1836. PMID:16946495 doi:http://dx.doi.org/10.1248/bpb.29.1836
  5. van Roermund CW, Visser WF, Ijlst L, van Cruchten A, Boek M, Kulik W, Waterham HR, Wanders RJ. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J. 2008 Dec;22(12):4201-8. doi: 10.1096/fj.08-110866. Epub 2008 Aug 29. PMID:18757502 doi:http://dx.doi.org/10.1096/fj.08-110866
  6. van Roermund CW, Visser WF, Ijlst L, Waterham HR, Wanders RJ. Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim Biophys Acta. 2011 Mar;1811(3):148-52. doi: 10.1016/j.bbalip.2010.11.010., Epub 2010 Dec 8. PMID:21145416 doi:http://dx.doi.org/10.1016/j.bbalip.2010.11.010
  7. Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J. Impaired very long-chain acyl-CoA beta-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem. 2013 Jun 28;288(26):19269-79. doi: 10.1074/jbc.M112.445445. Epub, 2013 May 13. PMID:23671276 doi:http://dx.doi.org/10.1074/jbc.M112.445445
  8. Okamoto T, Kawaguchi K, Watanabe S, Agustina R, Ikejima T, Ikeda K, Nakano M, Morita M, Imanaka T. Characterization of human ATP-binding cassette protein subfamily D reconstituted into proteoliposomes. Biochem Biophys Res Commun. 2018 Feb 19;496(4):1122-1127. doi:, 10.1016/j.bbrc.2018.01.153. Epub 2018 Feb 3. PMID:29397936 doi:http://dx.doi.org/10.1016/j.bbrc.2018.01.153
  9. Kawaguchi K, Mukai E, Watanabe S, Yamashita A, Morita M, So T, Imanaka T. Acyl-CoA thioesterase activity of peroxisomal ABC protein ABCD1 is required for the transport of very long-chain acyl-CoA into peroxisomes. Sci Rep. 2021 Jan 26;11(1):2192. doi: 10.1038/s41598-021-81949-3. PMID:33500543 doi:http://dx.doi.org/10.1038/s41598-021-81949-3

7vr1, resolution 3.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA