7vm0
Crystal structure of YojK from B.subtilis in complex with UDPCrystal structure of YojK from B.subtilis in complex with UDP
Structural highlights
FunctionPublication Abstract from PubMedOwing to zero-calorie, high-intensity sweetness and good taste profile, the plant-derived sweetener rebaudioside D (Reb D) has attracted great interest to replace sugars. However, low content of Reb D in stevia rebaudiana Bertoni as well as low soluble expression and enzymatic activity of plant-derived glycosyltransferase in Reb D preparation restrict its commercial usage. To address these problems, a novel glycosyltransferase YojK from Bacillus subtilis 168 with the ability to glycosylate Reb A to produce Reb D was identified. Then, structure-guided engineering was performed after solving its crystal structure. A variant YojK-I241T/G327N with 7.35-fold increase of the catalytic activity was obtained, which allowed to produce Reb D on a scale preparation with a great yield of 91.29%. Moreover, based on the results from molecular docking and molecular dynamics simulations, the improvement of enzymatic activity of YojK-I241T/G327N was ascribed to the formation of new hydrogen bonds between the enzyme and substrate or uridine diphosphate glucose. Therefore, this study provides an engineered bacterial glycosyltransferase YojK-I241T/G327N with high solubility and catalytic efficiency for potential industrial scale-production of Reb D. Highly efficient production of rebaudioside D enabled by structure-guided engineering of bacterial glycosyltransferase YojK.,Guo B, Hou X, Zhang Y, Deng Z, Ping Q, Fu K, Yuan Z, Rao Y Front Bioeng Biotechnol. 2022 Aug 25;10:985826. doi: 10.3389/fbioe.2022.985826., eCollection 2022. PMID:36091437[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|