7rox

From Proteopedia
Jump to navigation Jump to search

BthTX-I complexed with inhibitor MMVBthTX-I complexed with inhibitor MMV

Structural highlights

7rox is a 2 chain structure with sequence from Bothrops jararacussu. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PA2H1_BOTJR Snake venom phospholipase A2 homolog that lacks enzymatic activity. Shows local myotoxic activity (PubMed:11018293, PubMed:12079495, PubMed:31906173). Induces inflammation, since it induces edema and leukocytes infiltration (PubMed:11018293, PubMed:31906173). In addition, it induces NLRP3 NLRP3, ASC (PYCARD), caspase-1 (CASP1), and IL-1beta (IL1B) gene expression in the gastrocnemius muscle, showing that it is able to activate NLRP3 inflammasome (PubMed:31906173). It also damages artificial and myoblast membranes by a calcium-independent mechanism, has bactericidal activity, and induces neuromuscular blockade (PubMed:27531710). A model of myotoxic mechanism has been proposed: an apo Lys49-PLA2 is activated by the entrance of a hydrophobic molecule (e.g. fatty acid) at the hydrophobic channel of the protein leading to a reorientation of a monomer (PubMed:27531710) (By similarity). This reorientation causes a transition between 'inactive' to 'active' states, causing alignment of C-terminal and membrane-docking sites (MDoS) side-by-side and putting the membrane-disruption sites (MDiS) in the same plane, exposed to solvent and in a symmetric position for both monomers (PubMed:27531710) (By similarity). The MDoS region stabilizes the toxin on membrane by the interaction of charged residues with phospholipid head groups (PubMed:27531710) (By similarity). Subsequently, the MDiS region destabilizes the membrane with penetration of hydrophobic residues (PubMed:27531710) (By similarity). This insertion causes a disorganization of the membrane, allowing an uncontrolled influx of ions (i.e. calcium and sodium), and eventually triggering irreversible intracellular alterations and cell death (PubMed:27531710) (By similarity).[UniProtKB:I6L8L6][1] [2] [3] [4] [5] [6] [7] [8] [9]

Publication Abstract from PubMed

Snake envenomation is an ongoing global health problem and tropical neglected disease that afflicts millions of people each year. The only specific treatment, antivenom, has several limitations that affects its proper distribution to the victims and its efficacy against local effects, such as myonecrosis. The main responsible for this consequence are the phospholipases A2 (PLA2) and PLA2-like proteins, such as BthTX-I from Bothrops jararacussu. Folk medicine resorts to plants such as Tabernaemontana catharinensis to palliate these and other snakebite effects. Here, we evaluated the effect of its root bark extract and one of its isolated compounds, 12-methoxy-4-methyl-voachalotine (MMV), against the in vitro paralysis and muscle damage induced by BthTX-I. Secondary and quaternary structures of BthTX-I were not modified by the interaction with MMV. Instead, this compound interacted in an unprecedented way with the region inside the toxin hydrophobic channel and promoted a structural change in Val31, loop 58-71 and Membrane Disruption Site. Thus, we hypothesize that MMV inhibits PLA2-like proteins by preventing entrance of fatty acid into the hydrophobic channel. These data may explain the traditional use of T. catharinensis extract and confirm MMV as a promising candidate to complement antivenom or a structural guide to develop more effective inhibitors.

Structural and functional studies of a snake venom phospholipase A2-like protein complexed to an inhibitor purified from Tabernaemontana catharinensis.,Borges RJ, Cardoso FF, de Carvalho C, de Marino I, Pereira PS, Soares AM, Dal-Pai-Silva M, Uson I, Fontes MRM Biochimie. 2022 Oct 20. pii: S0300-9084(22)00277-2. doi:, 10.1016/j.biochi.2022.10.011. PMID:36273763[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Andriao-Escarso SH, Soares AM, Rodrigues VM, Angulo Y, Diaz C, Lomonte B, Gutierrez JM, Giglio JR. Myotoxic phospholipases A(2) in bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie. 2000 Aug;82(8):755-63. PMID:11018293
  2. Ward RJ, Chioato L, de Oliveira AH, Ruller R, Sa JM. Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis. Biochem J. 2002 Feb 15;362(Pt 1):89-96. PMID:11829743
  3. Chioato L, De Oliveira AH, Ruller R, Sa JM, Ward RJ. Distinct sites for myotoxic and membrane-damaging activities in the C-terminal region of a Lys49-phospholipase A2. Biochem J. 2002 Sep 15;366(Pt 3):971-6. PMID:12079495 doi:http://dx.doi.org/10.1042/BJ20020092
  4. Murakami MT, Vicoti MM, Abrego JR, Lourenzoni MR, Cintra AC, Arruda EZ, Tomaz MA, Melo PA, Arni RK. Interfacial surface charge and free accessibility to the PLA2-active site-like region are essential requirements for the activity of Lys49 PLA2 homologues. Toxicon. 2007 Mar 1;49(3):378-87. Epub 2006 Nov 3. PMID:17157889 doi:10.1016/j.toxicon.2006.10.011
  5. Chioato L, Aragao EA, Lopes Ferreira T, Medeiros AI, Faccioli LH, Ward RJ. Mapping of the structural determinants of artificial and biological membrane damaging activities of a Lys49 phospholipase A2 by scanning alanine mutagenesis. Biochim Biophys Acta. 2007 May;1768(5):1247-57. Epub 2007 Feb 9. PMID:17346668 doi:http://dx.doi.org/10.1016/j.bbamem.2007.01.023
  6. Aragao EA, Chioato L, Ward RJ. Permeabilization of E. coli K12 inner and outer membranes by bothropstoxin-I, A LYS49 phospholipase A2 from Bothrops jararacussu. Toxicon. 2008 Mar 15;51(4):538-46. Epub 2007 Nov 17. PMID:18160090 doi:http://dx.doi.org/10.1016/j.toxicon.2007.11.004
  7. Borges RJ, Cardoso FF, Fernandes CA, Dreyer TR, de Moraes DS, Floriano RS, Rodrigues-Simioni L, Fontes MR. Functional and structural studies of a Phospholipase A2-like protein complexed to zinc ions: Insights on its myotoxicity and inhibition mechanism. Biochim Biophys Acta. 2017 Jan;1861(1 Pt A):3199-3209. doi:, 10.1016/j.bbagen.2016.08.003. Epub 2016 Aug 13. PMID:27531710 doi:http://dx.doi.org/10.1016/j.bbagen.2016.08.003
  8. Homsi-Brandeburgo MI, Queiroz LS, Santo-Neto H, Rodrigues-Simioni L, Giglio JR. Fractionation of Bothrops jararacussu snake venom: partial chemical characterization and biological activity of bothropstoxin. Toxicon. 1988;26(7):615-27. PMID:3176051
  9. Boeno CN, Paloschi MV, Lopes JA, Pires WL, Setubal SDS, Evangelista JR, Soares AM, Zuliani JP. Inflammasome Activation Induced by a Snake Venom Lys49-Phospholipase A2 Homologue. Toxins (Basel). 2019 Dec 31;12(1). pii: toxins12010022. doi:, 10.3390/toxins12010022. PMID:31906173 doi:http://dx.doi.org/10.3390/toxins12010022
  10. Borges RJ, Cardoso FF, de Carvalho C, de Marino I, Pereira PS, Soares AM, Dal-Pai-Silva M, Uson I, Fontes MRM. Structural and functional studies of a snake venom phospholipase A2-like protein complexed to an inhibitor purified from Tabernaemontana catharinensis. Biochimie. 2022 Oct 20. pii: S0300-9084(22)00277-2. doi:, 10.1016/j.biochi.2022.10.011. PMID:36273763 doi:http://dx.doi.org/10.1016/j.biochi.2022.10.011

7rox, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA