7rnb

From Proteopedia
Jump to navigation Jump to search

Crystal structure of caspase-3 with inhibitor Ac-VDRVD-CHOCrystal structure of caspase-3 with inhibitor Ac-VDRVD-CHO

Structural highlights

7rnb is a 6 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.75Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Alzheimer's disease (AD) was first described by Alois Alzheimer over 100 years ago, but there is still no overarching theory that can explain its cause in detail. There are also no effective therapies to treat either the cause or the associated symptoms of this devastating disease. A potential approach to better understand the pathogenesis of AD could be the development of selective caspase-2 (Casp2) probes, as we have shown that a Casp2-mediated cleavage product of tau (Deltatau314) reversibly impairs cognitive and synaptic function in animal models of tauopathies. In this article, we map out the Casp2 binding site through the preparation and assay of a series of 35 pentapeptide inhibitors with the goal of gaining selectivity against caspase-3 (Casp3). We also employed computational docking methods to understand the key interactions in the binding pocket of Casp2 and the differences predicted for binding at Casp3. Moreover, we crystallographically characterized the binding of selected pentapeptides with Casp3. Furthermore, we engineered and expressed a series of recombinant tau mutants and investigated them in an in vitro cleavage assay. These studies resulted in simple peptidic inhibitors with nanomolar affinity, for example, AcVDV(Dab)D-CHO (24) with up to 27.7-fold selectivity against Casp3. Our findings provide a good basis for the future development of selective Casp2 probes and inhibitors that can serve as pharmacological tools in planned in vivo studies and as lead compounds for the design of bioavailable and more drug-like small molecules.

Structure-Based Design and Biological Evaluation of Novel Caspase-2 Inhibitors Based on the Peptide AcVDVAD-CHO and the Caspase-2-Mediated Tau Cleavage Sequence YKPVD314.,Bresinsky M, Strasser JM, Vallaster B, Liu P, McCue WM, Fuller J, Hubmann A, Singh G, Nelson KM, Cuellar ME, Wilmot CM, Finzel BC, Ashe KH, Walters MA, Pockes S ACS Pharmacol Transl Sci. 2022 Jan 5;5(1):20-40. doi: 10.1021/acsptsci.1c00251. , eCollection 2022 Jan 14. PMID:35059567[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bresinsky M, Strasser JM, Vallaster B, Liu P, McCue WM, Fuller J, Hubmann A, Singh G, Nelson KM, Cuellar ME, Wilmot CM, Finzel BC, Ashe KH, Walters MA, Pockes S. Structure-Based Design and Biological Evaluation of Novel Caspase-2 Inhibitors Based on the Peptide AcVDVAD-CHO and the Caspase-2-Mediated Tau Cleavage Sequence YKPVD314. ACS Pharmacol Transl Sci. 2022 Jan 5;5(1):20-40. PMID:35059567 doi:10.1021/acsptsci.1c00251

7rnb, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA