7qwg

From Proteopedia
Jump to navigation Jump to search

TMEM106B filaments with Fold IIa from Multiple system atrophy (case 19)TMEM106B filaments with Fold IIa from Multiple system atrophy (case 19)

Structural highlights

7qwg is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[T106B_HUMAN] Progressive non-fluent aphasia;Semantic dementia;Behavioral variant of frontotemporal dementia. The gene represented in this entry acts as a disease modifier. Risk alleles confer genetic susceptibility by increasing gene expression (PubMed:20154673, PubMed:21178100). Increased expression may be the result of down-regulation of microRNA miR-132 and miR-212, that repress TMEM106B expression (PubMed:22895706). Thr-185 is a risk allele associated with lower GRN protein levels and early age at onset in GRN UP-FTD mutation carriers: it presents slower protein degradation that leads to higher steady-state TMEM106B levels, leading to alterations in the intracellular versus extracellular partitioning of GRN (PubMed:23742080).[1] [2] [3] [4] The gene represented in this entry acts as a disease modifier. The disease may be caused by variants affecting the gene represented in this entry.

Function

[T106B_HUMAN] Involved in dendrite morphogenesis and maintenance by regulating lysosomal trafficking via its interaction with MAP6. May act by inhibiting retrograde transport of lysosomes along dendrites. Required for dendrite branching.[5] [6]

Publication Abstract from PubMed

Many age-dependent neurodegenerative diseases, like Alzheimer's and Parkinson's, are characterised by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-beta (Abeta), alpha-synuclein and TDP-43 are the most common(1,2). Here, we used electron cryo-microscopy (cryo-EM) structure determination to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the cryo-EM structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including sporadic and inherited tauopathies, Abeta-amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 neurologically normal individuals with no or only few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29 kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific for the C-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, neurologically normal individuals indicates that they form in an age-dependent manner.

Age-dependent formation of TMEM106B amyloid filaments in human brains.,Schweighauser M, Arseni D, Bacioglu M, Huang M, Lovestam S, Shi Y, Yang Y, Zhang W, Kotecha A, Garringer HJ, Vidal R, Hallinan GI, Newell KL, Tarutani A, Murayama S, Miyazaki M, Saito Y, Yoshida M, Hasegawa K, Lashley T, Revesz T, Kovacs GG, van Swieten J, Takao M, Hasegawa M, Ghetti B, Spillantini MG, Ryskeldi-Falcon B, Murzin AG, Goedert M, Scheres SHW Nature. 2022 Mar 28. pii: 10.1038/s41586-022-04650-z. doi:, 10.1038/s41586-022-04650-z. PMID:35344985[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, Dickson DW, Rademakers R, Boeve BF, Grossman M, Arnold SE, Mann DM, Pickering-Brown SM, Seelaar H, Heutink P, van Swieten JC, Murrell JR, Ghetti B, Spina S, Grafman J, Hodges J, Spillantini MG, Gilman S, Lieberman AP, Kaye JA, Woltjer RL, Bigio EH, Mesulam M, Al-Sarraj S, Troakes C, Rosenberg RN, White CL 3rd, Ferrer I, Llado A, Neumann M, Kretzschmar HA, Hulette CM, Welsh-Bohmer KA, Miller BL, Alzualde A, Lopez de Munain A, McKee AC, Gearing M, Levey AI, Lah JJ, Hardy J, Rohrer JD, Lashley T, Mackenzie IR, Feldman HH, Hamilton RL, Dekosky ST, van der Zee J, Kumar-Singh S, Van Broeckhoven C, Mayeux R, Vonsattel JP, Troncoso JC, Kril JJ, Kwok JB, Halliday GM, Bird TD, Ince PG, Shaw PJ, Cairns NJ, Morris JC, McLean CA, DeCarli C, Ellis WG, Freeman SH, Frosch MP, Growdon JH, Perl DP, Sano M, Bennett DA, Schneider JA, Beach TG, Reiman EM, Woodruff BK, Cummings J, Vinters HV, Miller CA, Chui HC, Alafuzoff I, Hartikainen P, Seilhean D, Galasko D, Masliah E, Cotman CW, Tunon MT, Martinez MC, Munoz DG, Carroll SL, Marson D, Riederer PF, Bogdanovic N, Schellenberg GD, Hakonarson H, Trojanowski JQ, Lee VM. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010 Mar;42(3):234-9. doi: 10.1038/ng.536. Epub 2010 Feb 14. PMID:20154673 doi:http://dx.doi.org/10.1038/ng.536
  2. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M, Crook R, Hunter T, Ghidoni R, Benussi L, Crook J, Finger E, Hantanpaa KJ, Karydas AM, Sengdy P, Gonzalez J, Seeley WW, Johnson N, Beach TG, Mesulam M, Forloni G, Kertesz A, Knopman DS, Uitti R, White CL 3rd, Caselli R, Lippa C, Bigio EH, Wszolek ZK, Binetti G, Mackenzie IR, Miller BL, Boeve BF, Younkin SG, Dickson DW, Petersen RC, Graff-Radford NR, Geschwind DH, Rademakers R. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011 Feb 1;76(5):467-74. doi: 10.1212/WNL.0b013e31820a0e3b. Epub 2010 , Dec 22. PMID:21178100 doi:http://dx.doi.org/10.1212/WNL.0b013e31820a0e3b
  3. Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L, Busch JI, Akle S, Grossman M, Van Deerlin V, Trojanowski JQ, Lee VM. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci. 2012 Aug 15;32(33):11213-27. doi: 10.1523/JNEUROSCI.0521-12.2012. PMID:22895706 doi:http://dx.doi.org/10.1523/JNEUROSCI.0521-12.2012
  4. Nicholson AM, Finch NA, Wojtas A, Baker MC, Perkerson RB 3rd, Castanedes-Casey M, Rousseau L, Benussi L, Binetti G, Ghidoni R, Hsiung GY, Mackenzie IR, Finger E, Boeve BF, Ertekin-Taner N, Graff-Radford NR, Dickson DW, Rademakers R. TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia. J Neurochem. 2013 Sep;126(6):781-91. doi: 10.1111/jnc.12329. Epub 2013 Jul 1. PMID:23742080 doi:http://dx.doi.org/10.1111/jnc.12329
  5. Brady OA, Zheng Y, Murphy K, Huang M, Hu F. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet. 2013 Feb 15;22(4):685-95. doi: 10.1093/hmg/dds475. Epub 2012 Nov, 6. PMID:23136129 doi:http://dx.doi.org/10.1093/hmg/dds475
  6. Schwenk BM, Lang CM, Hogl S, Tahirovic S, Orozco D, Rentzsch K, Lichtenthaler SF, Hoogenraad CC, Capell A, Haass C, Edbauer D. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J. 2014 Mar 3;33(5):450-67. doi: 10.1002/embj.201385857. Epub 2013 Dec 19. PMID:24357581 doi:http://dx.doi.org/10.1002/embj.201385857
  7. Schweighauser M, Arseni D, Bacioglu M, Huang M, Lovestam S, Shi Y, Yang Y, Zhang W, Kotecha A, Garringer HJ, Vidal R, Hallinan GI, Newell KL, Tarutani A, Murayama S, Miyazaki M, Saito Y, Yoshida M, Hasegawa K, Lashley T, Revesz T, Kovacs GG, van Swieten J, Takao M, Hasegawa M, Ghetti B, Spillantini MG, Ryskeldi-Falcon B, Murzin AG, Goedert M, Scheres SHW. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature. 2022 Mar 28. pii: 10.1038/s41586-022-04650-z. doi:, 10.1038/s41586-022-04650-z. PMID:35344985 doi:http://dx.doi.org/10.1038/s41586-022-04650-z

7qwg, resolution 3.38Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA