Structural highlightsFunctionKLK6_HUMAN Serine protease which exhibits a preference for Arg over Lys in the substrate P1 position and for Ser or Pro in the P2 position. Shows activity against amyloid precursor protein, myelin basic protein, gelatin, casein and extracellular matrix proteins such as fibronectin, laminin, vitronectin and collagen. Degrades alpha-synuclein and prevents its polymerization, indicating that it may be involved in the pathogenesis of Parkinson disease and other synucleinopathies. May be involved in regulation of axon outgrowth following spinal cord injury. Tumor cells treated with a neutralizing KLK6 antibody migrate less than control cells, suggesting a role in invasion and metastasis.[1] [2] [3] [4] [5] [6]
Publication Abstract from PubMed
Scalable asymmetric syntheses of two kallikrein-related protease 6 (KLK6) inhibitors are reported. The inhibitors are assembled by linking enantiomerically enriched fragments via amide bond formation, followed by conversion of a cyano group to an amidine. One fragment, an amine, was prepared using the Ellman auxiliary, and a lack of clarity in the literature regarding the stereochemical outcome of this reaction was solved via X-ray crystallographic analysis of two derivatives. Complexes of the inhibitors bound to human KLK6 were solved by X-ray crystallography, revealing the binding poses.
Scalable synthesis and structural characterization of reversible KLK6 inhibitors.,Baumann A, Isak D, Lohbeck J, Jagtap PKA, Hennig J, Miller AK RSC Adv. 2022 Sep 21;12(41):26989-26993. doi: 10.1039/d2ra04670a. eCollection , 2022 Sep 16. PMID:36320846[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See AlsoReferences
- ↑ Magklara A, Mellati AA, Wasney GA, Little SP, Sotiropoulou G, Becker GW, Diamandis EP. Characterization of the enzymatic activity of human kallikrein 6: Autoactivation, substrate specificity, and regulation by inhibitors. Biochem Biophys Res Commun. 2003 Aug 8;307(4):948-55. PMID:12878203
- ↑ Iwata A, Maruyama M, Akagi T, Hashikawa T, Kanazawa I, Tsuji S, Nukina N. Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum Mol Genet. 2003 Oct 15;12(20):2625-35. Epub 2003 Aug 19. PMID:12928483 doi:http://dx.doi.org/10.1093/hmg/ddg283
- ↑ Ghosh MC, Grass L, Soosaipillai A, Sotiropoulou G, Diamandis EP. Human kallikrein 6 degrades extracellular matrix proteins and may enhance the metastatic potential of tumour cells. Tumour Biol. 2004 Jul-Aug;25(4):193-9. PMID:15557757 doi:http://dx.doi.org/10.1159/000081102
- ↑ Scarisbrick IA, Sabharwal P, Cruz H, Larsen N, Vandell AG, Blaber SI, Ameenuddin S, Papke LM, Fehlings MG, Reeves RK, Blaber M, Windebank AJ, Rodriguez M. Dynamic role of kallikrein 6 in traumatic spinal cord injury. Eur J Neurosci. 2006 Sep;24(5):1457-69. PMID:16987227 doi:http://dx.doi.org/10.1111/j.1460-9568.2006.05021.x
- ↑ Angelo PF, Lima AR, Alves FM, Blaber SI, Scarisbrick IA, Blaber M, Juliano L, Juliano MA. Substrate specificity of human kallikrein 6: salt and glycosaminoglycan activation effects. J Biol Chem. 2006 Feb 10;281(6):3116-26. Epub 2005 Dec 1. PMID:16321973 doi:http://dx.doi.org/M510096200
- ↑ Bernett MJ, Blaber SI, Scarisbrick IA, Dhanarajan P, Thompson SM, Blaber M. Crystal structure and biochemical characterization of human kallikrein 6 reveals that a trypsin-like kallikrein is expressed in the central nervous system. J Biol Chem. 2002 Jul 5;277(27):24562-70. Epub 2002 Apr 30. PMID:11983703 doi:10.1074/jbc.M202392200
- ↑ Baumann A, Isak D, Lohbeck J, Jagtap PKA, Hennig J, Miller AK. Scalable synthesis and structural characterization of reversible KLK6 inhibitors. RSC Adv. 2022 Sep 21;12(41):26989-26993. doi: 10.1039/d2ra04670a. eCollection , 2022 Sep 16. PMID:36320846 doi:http://dx.doi.org/10.1039/d2ra04670a
| |