7e2o

From Proteopedia
Jump to navigation Jump to search

X-ray Crystal structure of PPARgamma R288H mutant.X-ray Crystal structure of PPARgamma R288H mutant.

Structural highlights

7e2o is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.2Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PPARG_HUMAN Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.

Function

PPARG_HUMAN Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6]

Publication Abstract from PubMed

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor and the molecular target of thiazolidinedione-class antidiabetic drugs. It has been reported that the loss of function R288H mutation in the human PPARgamma ligand-binding domain (LBD) may be associated with the onset of colon cancer. A previous in vitro study showed that this mutation dampens 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2, a natural PPARgamma agonist)-dependent transcriptional activation; however, it is poorly understood why the function of the R288H mutant is impaired and what role this arginine (Arg) residue plays. In this study, we found that the apo-form of R288H PPARgamma mutant displays several altered conformational arrangements of the amino acid side chains in LBD: 1) the loss of a salt bridge between Arg288 and Glu295 leads to increased helix 3 movement; 2) closer proximity of Gln286 and His449 via a hydrogen bond, and closer proximity of Cys285 and Phe363 via hydrophobic interaction, stabilize the helix 3-helix 11 interaction; and 3) there is steric hindrance between Cys285/Gln286/Ser289/His449 and the flexible ligands 15d-PGJ2, 6-oxotetracosahexaenoic acid (6-oxoTHA), and 17-oxodocosahexaenoic acid (17-oxoDHA). These results suggest why Arg288 plays an important role in ligand binding and why the R288H mutation is disadvantageous for flexible ligand binding.

Structural Insights into the Loss-of-Function R288H Mutant of Human PPARgamma.,Egawa D, Ogiso T, Nishikata K, Yamamoto K, Itoh T Biol Pharm Bull. 2021;44(9):1196-1201. doi: 10.1248/bpb.b21-00253. PMID:34471047[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med. 1998 Oct 1;339(14):953-9. PMID:9753710 doi:10.1056/NEJM199810013391403
  2. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002 Dec;51(12):3586-90. PMID:12453919
  3. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002 Jan;87(1):408-11. PMID:11788685
  4. Mukherjee R, Jow L, Croston GE, Paterniti JR Jr. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem. 1997 Mar 21;272(12):8071-6. PMID:9065481
  5. Yin Y, Yuan H, Wang C, Pattabiraman N, Rao M, Pestell RG, Glazer RI. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Mol Endocrinol. 2006 Feb;20(2):268-78. Epub 2005 Sep 8. PMID:16150867 doi:10.1210/me.2005-0197
  6. Park SH, Choi HJ, Yang H, Do KH, Kim J, Lee DW, Moon Y. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2010 Nov 12;285(46):35330-9. doi: 10.1074/jbc.M110.136259. Epub 2010, Sep 9. PMID:20829347 doi:10.1074/jbc.M110.136259
  7. Egawa D, Ogiso T, Nishikata K, Yamamoto K, Itoh T. Structural Insights into the Loss-of-Function R288H Mutant of Human PPARγ. Biol Pharm Bull. 2021;44(9):1196-1201. PMID:34471047 doi:10.1248/bpb.b21-00253

7e2o, resolution 3.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA