6yvh

From Proteopedia
Jump to navigation Jump to search

CWC22-CWC27-EIF4A3 ComplexCWC22-CWC27-EIF4A3 Complex

Structural highlights

6yvh is a 12 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.19Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CWC22_HUMAN Required for pre-mRNA splicing and for exon-junction complex (EJC) assembly. Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay.[1] [2] [3]

Publication Abstract from PubMed

Human CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible. Here, the structure of a CWC27/CWC22 heterodimer bound to the exon junction complex (EJC) core component eIF4A3 is solved at 3A-resolution. According to spliceosomal structures, the EJC is recruited in the C complex, once CWC27 has left. Our 3D structure of the eIF4A3/CWC22/CWC27 complex is compatible with the Bact spliceosome structure but not with that of the C complex, where a CWC27 loop would clash with the EJC core subunit Y14. A CWC27/CWC22 building block might thus form an intermediate landing platform for eIF4A3 onto the Bact complex prior to its conversion into C complex. Knock-down of either CWC27 or CWC22 in immortalized retinal pigment epithelial cells affects numerous common genes, indicating that these proteins cooperate, targeting the same pathways. As the most up-regulated genes encode factors involved in inflammation, our findings suggest a possible link to the retinal degeneration associated with CWC27 deficiencies.

Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes.,Busetto V, Barbosa I, Basquin J, Marquenet E, Hocq R, Hennion M, Paternina JA, Namane A, Conti E, Bensaude O, Le Hir H Nucleic Acids Res. 2020 Apr 24. pii: 5824608. doi: 10.1093/nar/gkaa267. PMID:32329775[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH. CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep. 2012 Sep 27;2(3):454-61. doi: 10.1016/j.celrep.2012.08.017. Epub 2012, Sep 6. PMID:22959432 doi:http://dx.doi.org/10.1016/j.celrep.2012.08.017
  2. Barbosa I, Haque N, Fiorini F, Barrandon C, Tomasetto C, Blanchette M, Le Hir H. Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat Struct Mol Biol. 2012 Oct;19(10):983-90. doi: 10.1038/nsmb.2380. Epub 2012, Sep 9. PMID:22961380 doi:http://dx.doi.org/10.1038/nsmb.2380
  3. Alexandrov A, Colognori D, Shu MD, Steitz JA. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21313-8. doi:, 10.1073/pnas.1219725110. Epub 2012 Dec 10. PMID:23236153 doi:http://dx.doi.org/10.1073/pnas.1219725110
  4. Busetto V, Barbosa I, Basquin J, Marquenet E, Hocq R, Hennion M, Paternina JA, Namane A, Conti E, Bensaude O, Le Hir H. Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes. Nucleic Acids Res. 2020 Apr 24. pii: 5824608. doi: 10.1093/nar/gkaa267. PMID:32329775 doi:http://dx.doi.org/10.1093/nar/gkaa267

6yvh, resolution 3.19Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA