6y0c

From Proteopedia
Jump to navigation Jump to search

Influenza C virus polymerase in complex with human ANP32A - Subclass 2Influenza C virus polymerase in complex with human ANP32A - Subclass 2

Structural highlights

6y0c is a 4 chain structure with sequence from Influenza A virus (A/nt/60/1968(H3N2)) and Influenza C virus (C/Johannesburg/1/66). Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.2Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PA_INCJH Implicated in endonuclease cleavage of capped RNA primers. Displays an elongation factor activity in viral RNA synthesis. Dispensable for viral transcription, but not replication (By similarity).

Publication Abstract from PubMed

Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge(1). Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes(2,3). RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity(4). Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.

Host ANP32A mediates the assembly of the influenza virus replicase.,Carrique L, Fan H, Walker AP, Keown JR, Sharps J, Staller E, Barclay WS, Fodor E, Grimes JM Nature. 2020 Nov;587(7835):638-643. doi: 10.1038/s41586-020-2927-z. Epub 2020 Nov , 18. PMID:33208942[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Carrique L, Fan H, Walker AP, Keown JR, Sharps J, Staller E, Barclay WS, Fodor E, Grimes JM. Host ANP32A mediates the assembly of the influenza virus replicase. Nature. 2020 Nov;587(7835):638-643. PMID:33208942 doi:10.1038/s41586-020-2927-z

6y0c, resolution 3.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA