6xot

From Proteopedia
Jump to navigation Jump to search

CryoEM structure of human presequence protease in partial open state 2CryoEM structure of human presequence protease in partial open state 2

Structural highlights

6xot is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:PITRM1, KIAA1104, MP1, PREP (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PREP_HUMAN] ATP-independent protease that degrades mitochondrial transit peptides after their cleavage. Also degrades other unstructured peptides. Specific for peptides in the range of 10 to 65 residues. Able to degrade amyloid beta A4 (APP) protein when it accumulates in mitochondrion, suggesting a link with Alzheimer disease. Shows a preference for cleavage after small polar residues and before basic residues, but without any positional preference.[1]

Publication Abstract from PubMed

Presequence protease (PreP), a 117 kDa mitochondrial M16C metalloprotease vital for mitochondrial proteostasis, degrades presequence peptides cleaved off from nuclear-encoded proteins and other aggregation-prone peptides, such as amyloid beta (Abeta). PreP structures have only been determined in a closed conformation; thus, the mechanisms of substrate binding and selectivity remain elusive. Here, we leverage advanced vitrification techniques to overcome the preferential denaturation of one of two ~55 kDa homologous domains of PreP caused by air-water interface adsorption. Thereby, we elucidate cryoEM structures of three apo-PreP open states along with Abeta- and citrate synthase presequence-bound PreP at 3.3-4.6 A resolution. Together with integrative biophysical and pharmacological approaches, these structures reveal the key stages of the PreP catalytic cycle and how the binding of substrates or PreP inhibitor drives a rigid body motion of the protein for substrate binding and catalysis. Together, our studies provide key mechanistic insights into M16C metalloproteases for future therapeutic innovations.

Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition.,Liang WG, Wijaya J, Wei H, Noble AJ, Mancl JM, Mo S, Lee D, Lin King JV, Pan M, Liu C, Koehler CM, Zhao M, Potter CS, Carragher B, Li S, Tang WJ Nat Commun. 2022 Apr 5;13(1):1833. doi: 10.1038/s41467-022-29322-4. PMID:35383169[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, Eneqvist T, Tjernberg L, Ankarcrona M, Glaser E. Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem. 2006 Sep 29;281(39):29096-104. Epub 2006 Jul 18. PMID:16849325 doi:M602532200
  2. Liang WG, Wijaya J, Wei H, Noble AJ, Mancl JM, Mo S, Lee D, Lin King JV, Pan M, Liu C, Koehler CM, Zhao M, Potter CS, Carragher B, Li S, Tang WJ. Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition. Nat Commun. 2022 Apr 5;13(1):1833. doi: 10.1038/s41467-022-29322-4. PMID:35383169 doi:http://dx.doi.org/10.1038/s41467-022-29322-4

6xot, resolution 3.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA