6w4f
NMR-driven structure of KRAS4B-GDP homodimer on a lipid bilayer nanodiscNMR-driven structure of KRAS4B-GDP homodimer on a lipid bilayer nanodisc
Structural highlights
DiseaseRASK_HUMAN Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:601626. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.[1] Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:609942. Noonan syndrome (NS) [MIM:163950 is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.[2] [3] [4] [5] [6] [7] Defects in KRAS are a cause of gastric cancer (GASC) [MIM:613659; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.[8] [9] [10] Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.[11] Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:115150; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development. FunctionRASK_HUMAN Ras proteins bind GDP/GTP and possess intrinsic GTPase activity. Publication Abstract from PubMedKRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an alpha4-alpha5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favours an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, 'cross'-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a vital platform to elucidate the structural basis of RAF activation by RAS and to develop newer inhibitors that can disrupt the KRAS dimerization. The methodology developed to specifically probe the intermolecular interactions within KRAS dimer is applicable to many other farnesylated small GTPases. Two Distinct Structures of Membrane-associated Homodimers of GTP- and GDP-bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement.,Lee KY, Fang Z, Enomoto M, Seabrook GG, Zheng L, Koide S, Ikura M, Marshall CB Angew Chem Int Ed Engl. 2020 Mar 29. doi: 10.1002/anie.202001758. PMID:32227412[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|