6v89

From Proteopedia
Jump to navigation Jump to search

Human CtBP1 (28-375) in complex with AMPHuman CtBP1 (28-375) in complex with AMP

Structural highlights

6v89 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.45Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CTBP1_HUMAN Involved in controlling the equilibrium between tubular and stacked structures in the Golgi complex. Functions in brown adipose tissue (BAT) differentiation. Corepressor targeting diverse transcription regulators such as GLIS2. Has dehydrogenase activity.[1] [2] [3] [4]

Publication Abstract from PubMed

C-terminal binding proteins (CtBPs) are cotranscriptional factors that play key roles in cell fate. We have previously shown that NAD(H) promotes the assembly of similar tetramers from either human CtBP1 and CtBP2 and that CtBP2 tetramer destabilizing mutants are defective for oncogenic activity. To assist structure-based design efforts for compounds that disrupt CtBP tetramerization, it is essential to understand how NAD(H) triggers tetramer assembly. Here, we investigate the moieties within NAD(H) that are responsible for triggering tetramer formation. Using multiangle light scattering (MALS), we show that ADP is able to promote tetramer formation of both CtBP1 and CtBP2, whereas AMP promotes tetramer assembly of CtBP1, but not CtBP2. Other NAD(H) moieties that lack the adenosine phosphate, including adenosine and those incorporating nicotinamide, all fail to promote tetramer assembly. Our crystal structures of CtBP1 with AMP reveal participation of the adenosine phosphate in the tetrameric interface, pinpointing its central role in NAD(H)-linked assembly. CtBP1 and CtBP2 have overlapping but unique roles, suggesting that a detailed understanding of their unique structural properties might have utility in the design of paralog-specific inhibitors. We investigated the different responses to AMP through a series of site-directed mutants at 13 positions. These mutations reveal a central role for a hinge segment, which we term the 120s hinge that connects the substrate with coenzyme-binding domains and influences nucleotide binding and tetramer assembly. Our results provide insight into suitable pockets to explore in structure-based drug design to interfere with cotranscriptional activity of CtBP in cancer.

NAD(H) phosphates mediate tetramer assembly of human C-terminal binding protein (CtBP).,Nichols JC, Schiffer CA, Royer WE Jr J Biol Chem. 2021 Jan-Jun;296:100351. doi: 10.1016/j.jbc.2021.100351. Epub 2021 , Jan 30. PMID:33524397[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Sewalt RG, Gunster MJ, van der Vlag J, Satijn DP, Otte AP. C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol. 1999 Jan;19(1):777-87. PMID:9858600
  2. Alpatov R, Munguba GC, Caton P, Joo JH, Shi Y, Shi Y, Hunt ME, Sugrue SP. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol. 2004 Dec;24(23):10223-35. PMID:15542832 doi:http://dx.doi.org/10.1128/MCB.24.23.10223-10235.2004
  3. Purbey PK, Singh S, Notani D, Kumar PP, Limaye AS, Galande S. Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol Cell Biol. 2009 Mar;29(5):1321-37. doi: 10.1128/MCB.00822-08. Epub 2008 Dec, 22. PMID:19103759 doi:10.1128/MCB.00822-08
  4. Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell. 2002 Oct;10(4):857-69. PMID:12419229
  5. Nichols JC, Schiffer CA, Royer WE Jr. NAD(H) phosphates mediate tetramer assembly of human C-terminal binding protein (CtBP). J Biol Chem. 2021 Jan-Jun;296:100351. PMID:33524397 doi:10.1016/j.jbc.2021.100351

6v89, resolution 2.45Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA