6tqj
Crystal structure of the c14 ring of the F1FO ATP synthase from spinach chloroplastCrystal structure of the c14 ring of the F1FO ATP synthase from spinach chloroplast
Structural highlights
FunctionATPH_SPIOL F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01396] Key component of the F(0) channel; it plays a direct role in translocation across the membrane. A homomeric c-ring of 14 subunits forms the central stalk rotor element with the F(1) delta and epsilon subunits.[HAMAP-Rule:MF_01396] Publication Abstract from PubMedMembrane integral ATP synthases produce adenosine triphosphate, the universal "energy currency" of most organisms. However, important details of proton driven energy conversion are still unknown. We present the first high-resolution structure (2.3 A) of the in meso crystallized c-ring of 14 subunits from spinach chloroplasts. The structure reveals molecular mechanisms of intersubunit contacts in the c14-ring, and it shows additional electron densities inside the c-ring which form circles parallel to the membrane plane. Similar densities were found in all known high-resolution structures of c-rings of F1FO ATP synthases from archaea and bacteria to eukaryotes. The densities might originate from isoprenoid quinones (such as coenzyme Q in mitochondria and plastoquinone in chloroplasts) that is consistent with differential UV-Vis spectroscopy of the c-ring samples, unusually large distance between polar/apolar interfaces inside the c-ring and universality among different species. Although additional experiments are required to verify this hypothesis, coenzyme Q and its analogues known as electron carriers of bioenergetic chains may be universal cofactors of ATP synthases, stabilizing c-ring and prevent ion leakage through it. Unusual features of the c-ring of F1FO ATP synthases.,Vlasov AV, Kovalev KV, Marx SH, Round ES, Gushchin IY, Polovinkin VA, Tsoy NM, Okhrimenko IS, Borshchevskiy VI, Buldt GD, Ryzhykau YL, Rogachev AV, Chupin VV, Kuklin AI, Dencher NA, Gordeliy VI Sci Rep. 2019 Dec 6;9(1):18547. doi: 10.1038/s41598-019-55092-z. PMID:31811229[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|