Selective Affimers Recognize BCL-2 Family Proteins Through Non-Canonical Structural MotifsSelective Affimers Recognize BCL-2 Family Proteins Through Non-Canonical Structural Motifs

Structural highlights

6st2 is a 4 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.79Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

B2CL1_HUMAN Potent inhibitor of cell death. Inhibits activation of caspases (By similarity). Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.[1] [2] Isoform Bcl-X(S) promotes apoptosis.[3] [4]

Publication Abstract from PubMed

The BCL-2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL, BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL-2 protein. For anti-apoptotic targets BCL-xL and MCL-1, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug bound like conformation. These proof of concept studies indicate that Affimers could be used as alternative templates to inspire design of selective BCL-2 family modulators and more generally other protein-protein interaction inhibitors.

Selective Affimers Recognize the BCL-2 Family Proteins BCL-xL and MCL-1 through Non-Canonical Structural Motifs.,Miles J, Hobor F, Trinh C, Taylor J, Tiede C, Rowell P, Jackson B, Nadat F, Ramsahye P, Kyle H, Wicky B, Clarke J, Tomlinson D, Wilson A, Edwards T Chembiochem. 2020 Sep 22. doi: 10.1002/cbic.202000585. PMID:32961017[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
  2. Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
  3. Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
  4. Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
  5. Miles JA, Hobor F, Trinh CH, Taylor J, Tiede C, Rowell PR, Jackson BR, Nadat FA, Ramsahye P, Kyle HF, Wicky BIM, Clarke J, Tomlinson DC, Wilson AJ, Edwards TA. Selective Affimers Recognise the BCL-2 Family Proteins BCL-x(L) and MCL-1 through Noncanonical Structural Motifs*. Chembiochem. 2021 Jan 5;22(1):232-240. PMID:32961017 doi:10.1002/cbic.202000585

6st2, resolution 1.79Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA