| Structural highlights6sc2 is a 14 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | |
Gene: | WDR60 (HUMAN), WDR34 (HUMAN), DYNC2LI1, D2LIC, LIC3, CGI-60 (HUMAN), DYNLRB1, BITH, DNCL2A, DNLC2A, ROBLD1, HSPC162 (HUMAN), DYNLL1, DLC1, DNCL1, DNCLC1, HDLC1 (HUMAN) |
Experimental data: | Check | Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease[WDR60_HUMAN] Short rib-polydactyly syndrome, Verma-Naumoff type;Jeune syndrome. The disease is caused by mutations affecting the gene represented in this entry. Fibroblasts from affected individuals exhibit a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. [WDR34_HUMAN] Short rib-polydactyly syndrome, Verma-Naumoff type;Jeune syndrome. The disease is caused by mutations affecting the gene represented in this entry. [DC2L1_HUMAN] Jeune syndrome;Ellis Van Creveld syndrome. The disease is caused by mutations affecting the gene represented in this entry.
Function[DLRB1_HUMAN] Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. [WDR60_HUMAN] May play a role in ciliogenesis.[1] [DYL1_HUMAN] Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in changing or maintaining the spatial distribution of cytoskeletal structures.[2] [3] [4] [5] Binds and inhibits the catalytic activity of neuronal nitric oxide synthase.[6] [7] [8] [9] Promotes transactivation functions of ESR1 and plays a role in the nuclear localization of ESR1.[10] [11] [12] [13] Regulates apoptotic activities of BCL2L11 by sequestering it to microtubules. Upon apoptotic stimuli the BCL2L11-DYNLL1 complex dissociates from cytoplasmic dynein and translocates to mitochondria and sequesters BCL2 thus neutralizing its antiapoptotic activity.[14] [15] [16] [17] [WDR34_HUMAN] Critical for ciliary functions, essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-motor-based intraflagellar transport (IFT) machinery. Acts as a negative regulator of the Toll-like and IL-1R receptor signaling pathways. Inhibits the MAP3K7-induced NF-kappa-B activation pathway. Inhibits MAP3K7 phosphorylation at 'Thr-184' and 'Thr-187' upon Il-1 beta stimulation.[18] [19] [DC2L1_HUMAN] Required for correct intraflagellar transport (IFT), the bi-directional movement of particles required for the assembly, maintenance and functioning of primary cilia. Involved in the regulation of ciliary length.[20] [21]
Publication Abstract from PubMed
Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60-WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60-WDR34-light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Structure of the dynein-2 complex and its assembly with intraflagellar transport trains.,Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ Nat Struct Mol Biol. 2019 Sep;26(9):823-829. doi: 10.1038/s41594-019-0286-y. Epub, 2019 Aug 26. PMID:31451806[22]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See AlsoReferences
- ↑ McInerney-Leo AM, Schmidts M, Cortes CR, Leo PJ, Gener B, Courtney AD, Gardiner B, Harris JA, Lu Y, Marshall M, Scambler PJ, Beales PL, Brown MA, Zankl A, Mitchison HM, Duncan EL, Wicking C. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am J Hum Genet. 2013 Sep 5;93(3):515-23. doi: 10.1016/j.ajhg.2013.06.022. Epub, 2013 Aug 1. PMID:23910462 doi:http://dx.doi.org/10.1016/j.ajhg.2013.06.022
- ↑ Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999 Mar;3(3):287-96. PMID:10198631
- ↑ Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollander P, Kumar R. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell. 2004 Jun;5(6):575-85. PMID:15193260 doi:10.1016/j.ccr.2004.05.022
- ↑ Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R. Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 2005 Jun;6(6):538-44. PMID:15891768 doi:10.1038/sj.embor.7400417
- ↑ Rayala SK, den Hollander P, Manavathi B, Talukder AH, Song C, Peng S, Barnekow A, Kremerskothen J, Kumar R. Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells. J Biol Chem. 2006 Jul 14;281(28):19092-9. Epub 2006 May 9. PMID:16684779 doi:10.1074/jbc.M600021200
- ↑ Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999 Mar;3(3):287-96. PMID:10198631
- ↑ Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollander P, Kumar R. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell. 2004 Jun;5(6):575-85. PMID:15193260 doi:10.1016/j.ccr.2004.05.022
- ↑ Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R. Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 2005 Jun;6(6):538-44. PMID:15891768 doi:10.1038/sj.embor.7400417
- ↑ Rayala SK, den Hollander P, Manavathi B, Talukder AH, Song C, Peng S, Barnekow A, Kremerskothen J, Kumar R. Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells. J Biol Chem. 2006 Jul 14;281(28):19092-9. Epub 2006 May 9. PMID:16684779 doi:10.1074/jbc.M600021200
- ↑ Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999 Mar;3(3):287-96. PMID:10198631
- ↑ Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollander P, Kumar R. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell. 2004 Jun;5(6):575-85. PMID:15193260 doi:10.1016/j.ccr.2004.05.022
- ↑ Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R. Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 2005 Jun;6(6):538-44. PMID:15891768 doi:10.1038/sj.embor.7400417
- ↑ Rayala SK, den Hollander P, Manavathi B, Talukder AH, Song C, Peng S, Barnekow A, Kremerskothen J, Kumar R. Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells. J Biol Chem. 2006 Jul 14;281(28):19092-9. Epub 2006 May 9. PMID:16684779 doi:10.1074/jbc.M600021200
- ↑ Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999 Mar;3(3):287-96. PMID:10198631
- ↑ Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollander P, Kumar R. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell. 2004 Jun;5(6):575-85. PMID:15193260 doi:10.1016/j.ccr.2004.05.022
- ↑ Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R. Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 2005 Jun;6(6):538-44. PMID:15891768 doi:10.1038/sj.embor.7400417
- ↑ Rayala SK, den Hollander P, Manavathi B, Talukder AH, Song C, Peng S, Barnekow A, Kremerskothen J, Kumar R. Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells. J Biol Chem. 2006 Jul 14;281(28):19092-9. Epub 2006 May 9. PMID:16684779 doi:10.1074/jbc.M600021200
- ↑ Gao D, Wang R, Li B, Yang Y, Zhai Z, Chen DY. WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway. Cell Mol Life Sci. 2009 Aug;66(15):2573-84. doi: 10.1007/s00018-009-0059-6. Epub , 2009 Jun 12. PMID:19521662 doi:http://dx.doi.org/10.1007/s00018-009-0059-6
- ↑ Huber C, Wu S, Kim AS, Sigaudy S, Sarukhanov A, Serre V, Baujat G, Le Quan Sang KH, Rimoin DL, Cohn DH, Munnich A, Krakow D, Cormier-Daire V. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-kappaB pathway in cilia. Am J Hum Genet. 2013 Nov 7;93(5):926-31. doi: 10.1016/j.ajhg.2013.10.007. Epub, 2013 Oct 31. PMID:24183449 doi:http://dx.doi.org/10.1016/j.ajhg.2013.10.007
- ↑ Taylor SP, Dantas TJ, Duran I, Wu S, Lachman RS, Nelson SF, Cohn DH, Vallee RB, Krakow D. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun. 2015 Jun 16;6:7092. doi: 10.1038/ncomms8092. PMID:26077881 doi:http://dx.doi.org/10.1038/ncomms8092
- ↑ Kessler K, Wunderlich I, Uebe S, Falk NS, Giessl A, Brandstatter JH, Popp B, Klinger P, Ekici AB, Sticht H, Dorr HG, Reis A, Roepman R, Seemanova E, Thiel CT. DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects. Sci Rep. 2015 Jul 1;5:11649. doi: 10.1038/srep11649. PMID:26130459 doi:http://dx.doi.org/10.1038/srep11649
- ↑ Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol. 2019 Sep;26(9):823-829. doi: 10.1038/s41594-019-0286-y. Epub, 2019 Aug 26. PMID:31451806 doi:http://dx.doi.org/10.1038/s41594-019-0286-y
|