6prp

From Proteopedia
Jump to navigation Jump to search

Structural Basis for Client Recognition and Activity of Hsp40 ChaperonesStructural Basis for Client Recognition and Activity of Hsp40 Chaperones

Structural highlights

6prp is a 1 chain structure with sequence from Thermus thermophilus and Thermus thermophilus HB8. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DNAJ2_THET8 Does not influence ATP binding or hydrolysis nor ADP release. Exerts influence on the interaction of DnaK with substrates; in the presence of DafA, DnaJ inhibits substrate binding, and substrate already bound to DnaK is displaced by DnaJ and DafA.[1] DNAK_THET8 Cooperates with DnaJ, GrpE and ClpB to reactivate heat-inactivated proteins.[2]

Publication Abstract from PubMed

Hsp70 and Hsp40 chaperones work synergistically in a wide range of biological processes including protein synthesis, membrane translocation, and folding. We used nuclear magnetic resonance spectroscopy to determine the solution structure and dynamic features of an Hsp40 in complex with an unfolded client protein. Atomic structures of the various binding sites in the client complexed to the binding domains of the Hsp40 reveal the recognition pattern. Hsp40 engages the client in a highly dynamic fashion using a multivalent binding mechanism that alters the folding properties of the client. Different Hsp40 family members have different numbers of client-binding sites with distinct sequence selectivity, providing additional mechanisms for activity regulation and function modification. Hsp70 binding to Hsp40 displaces the unfolded client. The activity of Hsp40 is altered in its complex with Hsp70, further regulating client binding and release.

Structural basis for client recognition and activity of Hsp40 chaperones.,Jiang Y, Rossi P, Kalodimos CG Science. 2019 Sep 20;365(6459):1313-1319. doi: 10.1126/science.aax1280. PMID:31604242[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Klostermeier D, Seidel R, Reinstein J. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system. J Mol Biol. 1999 Apr 2;287(3):511-25. PMID:10092456 doi:10.1006/jmbi.1999.2636
  2. Motohashi K, Watanabe Y, Yohda M, Yoshida M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7184-9. PMID:10377389
  3. Jiang Y, Rossi P, Kalodimos CG. Structural basis for client recognition and activity of Hsp40 chaperones. Science. 2019 Sep 20;365(6459):1313-1319. doi: 10.1126/science.aax1280. PMID:31604242 doi:http://dx.doi.org/10.1126/science.aax1280
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA