6owh

From Proteopedia
Jump to navigation Jump to search

Crystal structure of MYST acetyltransferase domain in complex with inhibitor 92Crystal structure of MYST acetyltransferase domain in complex with inhibitor 92

Structural highlights

6owh is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KAT8_HUMAN Histone acetyltransferase which may be involved in transcriptional activation. May influence the function of ATM. As part of the MSL complex it is involved in acetylation of nucleosomal histone H4 producing specifically H4K16ac. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. That activity is less specific than the one of the MSL complex.[1] [2] [3]

Publication Abstract from PubMed

A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 muM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 muM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.

Discovery of Acylsulfonohydrazide-Derived Inhibitors of the Lysine Acetyltransferase, KAT6A, as Potent Senescence-Inducing Anti-Cancer Agents.,Priebbenow DL, Leaver DJ, Nguyen N, Cleary B, Lagiakos HR, Sanchez J, Xue L, Huang F, Sun Y, Mujumdar P, Mudududdla R, Varghese S, Teguh S, Charman SA, White KL, Shackleford DM, Katneni K, Cuellar M, Strasser JM, Dahlin JL, Walters MA, Street IP, Monahan BJ, Jarman KE, Jousset Sabroux H, Falk H, Chung MC, Hermans SJ, Downer NL, Parker MW, Voss AK, Thomas T, Baell JB J Med Chem. 2020 Mar 19. doi: 10.1021/acs.jmedchem.9b02071. PMID:32118427[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM. MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation. J Biol Chem. 2002 Dec 27;277(52):50860-6. Epub 2002 Oct 22. PMID:12397079 doi:10.1074/jbc.M203839200
  2. Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK. Involvement of human MOF in ATM function. Mol Cell Biol. 2005 Jun;25(12):5292-305. PMID:15923642 doi:25/12/5292
  3. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010 Feb 12;285(7):4268-72. doi: 10.1074/jbc.C109.087981. Epub 2009 , Dec 14. PMID:20018852 doi:10.1074/jbc.C109.087981
  4. Priebbenow DL, Leaver DJ, Nguyen N, Cleary B, Lagiakos HR, Sanchez J, Xue L, Huang F, Sun Y, Mujumdar P, Mudududdla R, Varghese S, Teguh S, Charman SA, White KL, Shackleford DM, Katneni K, Cuellar M, Strasser JM, Dahlin JL, Walters MA, Street IP, Monahan BJ, Jarman KE, Jousset Sabroux H, Falk H, Chung MC, Hermans SJ, Downer NL, Parker MW, Voss AK, Thomas T, Baell JB. Discovery of Acylsulfonohydrazide-Derived Inhibitors of the Lysine Acetyltransferase, KAT6A, as Potent Senescence-Inducing Anti-Cancer Agents. J Med Chem. 2020 Mar 19. doi: 10.1021/acs.jmedchem.9b02071. PMID:32118427 doi:http://dx.doi.org/10.1021/acs.jmedchem.9b02071

6owh, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA