6mp7

From Proteopedia
Jump to navigation Jump to search

Crystal structure of the E257A mutant of BlMan5B in complex with GlcNAc (soaking)Crystal structure of the E257A mutant of BlMan5B in complex with GlcNAc (soaking)

Structural highlights

6mp7 is a 2 chain structure with sequence from Bifidobacterium longum DJO10A. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.75Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

B3DQP5_BIFLD

Publication Abstract from PubMed

Bifidobacteria represent one of the first colonizers of human gut microbiota, providing to this ecosystem better health and nutrition. To maintain a mutualistic relationship, they have enzymes to degrade and use complex carbohydrates non-digestible by their hosts. To succeed in the densely populated gut environment, they evolved molecular strategies that remain poorly understood. Herein, we report a novel mechanism found in probiotic Bifidobacteria for the depolymerization of the ubiquitous 2-acetamido-2-deoxy-4-O-(beta-d-mannopyranosyl)-d-glucopyranose (Man-beta-1,4-GlcNAc), a disaccharide that composes the universal core of eukaryotic N-glycans. In contrast to Bacteroidetes, these Bifidobacteria have a specialist and strain-specific beta-mannosidase that contains three distinctive structural elements conferring high selectivity for Man-beta-1,4-GlcNAc: a lid that undergoes conformational changes upon substrate binding, a tryptophan residue swapped between the two dimeric subunits to accommodate the GlcNAc moiety, and a Rossmann fold subdomain strategically located near to the active site pocket. These key structural elements for Man-beta-1,4-GlcNAc specificity are highly conserved in Bifidobacterium species adapted to the gut of a wide range of social animals, including bee, pig, rabbit, and human. Together, our findings uncover an unprecedented molecular strategy employed by Bifidobacteria to selectively uptake carbohydrates from N-glycans in social hosts.

N-glycan Utilization by Bifidobacterium Gut Symbionts Involves a Specialist beta-Mannosidase.,Cordeiro RL, Pirolla RAS, Persinoti GF, Gozzo FC, de Giuseppe PO, Murakami MT J Mol Biol. 2019 Jan 11. pii: S0022-2836(19)30006-3. doi:, 10.1016/j.jmb.2018.12.017. PMID:30641082[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cordeiro RL, Pirolla RAS, Persinoti GF, Gozzo FC, de Giuseppe PO, Murakami MT. N-glycan Utilization by Bifidobacterium Gut Symbionts Involves a Specialist beta-Mannosidase. J Mol Biol. 2019 Jan 11. pii: S0022-2836(19)30006-3. doi:, 10.1016/j.jmb.2018.12.017. PMID:30641082 doi:http://dx.doi.org/10.1016/j.jmb.2018.12.017

6mp7, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA