6j9h

From Proteopedia
Jump to navigation Jump to search

Crystal structure of SVBP-VASH1 complexCrystal structure of SVBP-VASH1 complex

Structural highlights

6j9h is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.31Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SVBP_HUMAN Enhances the tyrosine carboxypeptidase activity of VASH1 and VASH2, thereby promoting the removal of the C-terminal tyrosine residue of alpha-tubulin (PubMed:29146869). Also required to enhance the solubility and secretion of VASH1 and VASH2 (PubMed:20736312, PubMed:27879017).[1] [2] [3]

Publication Abstract from PubMed

alpha-Tubulin detyrosination, largely catalyzed by vasohibins, is involved in many microtubule (MT)-related cellular events. In this study, we identified a core heterodimeric complex of human small vasohibin-binding protein (SVBP) and vasohibin 1 (VASH1) (hereafter denoted as SVBP-VASH1) that catalyzes the detyrosination of a peptide derived from C-terminus of alpha-tubulin. We further solved the crystal structures of the SVBP-VASH1 heterodimer alone and in complex with either an inhibitor or a mutant substrate peptide. Our structural research, complemented by biochemical and mutagenesis experiments, resulted in identification of the key residues for VASH1 binding to SVBP and alpha-tubulin substrate. Our in vivo experiments reveal that MT detyrosination in general, as well as the interactions between SVBP, VASH1, and alpha-tubulin, are critical for spindle function and accurate chromosome segregation during mitosis. Furthermore, we found that the phenotypes caused by the depletion of vasohibins were largely rescued upon co-depletion of kinesin13/MCAK, suggesting the coordination between the MT depolymerase and MT detyrosination during mitosis. Thus our work not only provides structural insights into the molecular mechanism of alpha-tubulin detyrosination catalyzed by SVBP-bound vasohibins, but also uncovers the key role of vasohibins-mediated MT detyrosination in spindle morphology and chromosome segregation during mitosis.

Molecular basis of vasohibins-mediated detyrosination and its impact on spindle function and mitosis.,Liao S, Rajendraprasad G, Wang N, Eibes S, Gao J, Yu H, Wu G, Tu X, Huang H, Barisic M, Xu C Cell Res. 2019 Jun 6. pii: 10.1038/s41422-019-0187-y. doi:, 10.1038/s41422-019-0187-y. PMID:31171830[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Suzuki Y, Kobayashi M, Miyashita H, Ohta H, Sonoda H, Sato Y. Isolation of a small vasohibin-binding protein (SVBP) and its role in vasohibin secretion. J Cell Sci. 2010 Sep 15;123(Pt 18):3094-101. doi: 10.1242/jcs.067538. Epub 2010, Aug 24. PMID:20736312 doi:http://dx.doi.org/10.1242/jcs.067538
  2. Kadonosono T, Yimchuen W, Tsubaki T, Shiozawa T, Suzuki Y, Kuchimaru T, Sato Y, Kizaka-Kondoh S. Domain architecture of vasohibins required for their chaperone-dependent unconventional extracellular release. Protein Sci. 2017 Mar;26(3):452-463. doi: 10.1002/pro.3089. Epub 2017 Feb 11. PMID:27879017 doi:http://dx.doi.org/10.1002/pro.3089
  3. Nieuwenhuis J, Adamopoulos A, Bleijerveld OB, Mazouzi A, Stickel E, Celie P, Altelaar M, Knipscheer P, Perrakis A, Blomen VA, Brummelkamp TR. Vasohibins encode tubulin detyrosinating activity. Science. 2017 Dec 15;358(6369):1453-1456. doi: 10.1126/science.aao5676. Epub 2017, Nov 16. PMID:29146869 doi:http://dx.doi.org/10.1126/science.aao5676
  4. Liao S, Rajendraprasad G, Wang N, Eibes S, Gao J, Yu H, Wu G, Tu X, Huang H, Barisic M, Xu C. Molecular basis of vasohibins-mediated detyrosination and its impact on spindle function and mitosis. Cell Res. 2019 Jun 6. pii: 10.1038/s41422-019-0187-y. doi:, 10.1038/s41422-019-0187-y. PMID:31171830 doi:http://dx.doi.org/10.1038/s41422-019-0187-y

6j9h, resolution 2.31Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA