6idc
Loop deletion and proline insertion mutant (deleting six residues and inserted six proline residues)Loop deletion and proline insertion mutant (deleting six residues and inserted six proline residues)
Structural highlights
FunctionPublication Abstract from PubMedIn "domain-swapping," proteins mutually interconvert structural elements to form a dimer/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, we show a simple design strategy for domain-swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain-swapped dimers and the polyproline portion formed a polyproline II (PPII) structure. Small-angle x-ray scattering (SAXS) demonstrated that an extended orientation of domain-swapped dimer was retained in the solution. We found that a multiple of three of inserting proline residue is favored for domain-swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation. Domain-swapping design by poly-proline rod insertion.,Shiga S, Yamanaka M, Fujiwara W, Hirota S, Goda S, Makabe K Chembiochem. 2019 May 15. doi: 10.1002/cbic.201900179. PMID:31094059[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|