6h5w

From Proteopedia
Jump to navigation Jump to search

Crystal structure of human Angiotensin-1 converting enzyme C-domain in complex with Omapatrilat.Crystal structure of human Angiotensin-1 converting enzyme C-domain in complex with Omapatrilat.

Structural highlights

6h5w is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , , , ,
NonStd Res:
Gene:ACE, DCP, DCP1 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[ACE_HUMAN] Genetic variations in ACE may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[1] Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:267430]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).[2] Genetic variations in ACE are associated with susceptibility to microvascular complications of diabetes type 3 (MVCD3) [MIM:612624]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Defects in ACE are a cause of susceptibility to intracerebral hemorrhage (ICH) [MIM:614519]. A pathological condition characterized by bleeding into one or both cerebral hemispheres including the basal ganglia and the cerebral cortex. It is often associated with hypertension and craniocerebral trauma. Intracerebral bleeding is a common cause of stroke.[3]

Function

[ACE_HUMAN] Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety.

Publication Abstract from PubMed

Omapatrilat was designed as a vasopeptidase inhibitor with dual activity against the zinc metallopeptidases angiotensin-1 converting enzyme (ACE) and neprilysin (NEP). ACE has two homologous catalytic domains (nACE and cACE) which exhibit different substrate specificities. Here we report high-resolution crystal structures of omapatrilat in complex with nACE and cACE, and show omapatrilat has sub-nanomolar affinity for both domains. The structures show nearly identical binding interactions for omapatrilat in each domain, explaining the lack of domain selectivity. The cACE complex structure revealed an omapatrilat dimer occupying the cavity beyond the S2 subsite, and this dimer had low micromolar inhibition of nACE and cACE. These results highlight residues beyond the S2 subsite that could be exploited for domain selective inhibition. In addition, it suggests the possibility of either domain specific allosteric inhibitors that bind exclusively to the non-prime cavity, or the potential for targeting specific substrates rather than completely inhibiting the enzyme.

Molecular Basis for Multiple Omapatrilat Binding Sites within the ACE C-domain - Implications for Drug Design.,Cozier GE, Arendse LB, Schwager SL, Sturrock ED, Acharya KR J Med Chem. 2018 Oct 29. doi: 10.1021/acs.jmedchem.8b01309. PMID:30372620[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
  2. Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, Laube G, Delezoide AL, Bouvier R, Dijoud F, Ollagnon-Roman E, Roume J, Joubert M, Antignac C, Gubler MC. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005 Sep;37(9):964-8. Epub 2005 Aug 14. PMID:16116425 doi:ng1623
  3. Slowik A, Turaj W, Dziedzic T, Haefele A, Pera J, Malecki MT, Glodzik-Sobanska L, Szermer P, Figlewicz DA, Szczudlik A. DD genotype of ACE gene is a risk factor for intracerebral hemorrhage. Neurology. 2004 Jul 27;63(2):359-61. PMID:15277638
  4. Cozier GE, Arendse LB, Schwager SL, Sturrock ED, Acharya KR. Molecular Basis for Multiple Omapatrilat Binding Sites within the ACE C-domain - Implications for Drug Design. J Med Chem. 2018 Oct 29. doi: 10.1021/acs.jmedchem.8b01309. PMID:30372620 doi:http://dx.doi.org/10.1021/acs.jmedchem.8b01309

6h5w, resolution 1.37Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA