6gm2
[FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant E282D[FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant E282D
Structural highlights
Publication Abstract from PubMedThe unmatched catalytic turnover rates of [FeFe]-hydrogenases require an exceptionally efficient proton-transfer (PT) pathway to shuttle protons as substrates or products between bulk water and catalytic center. For clostridial [FeFe]-hydrogenase CpI such a pathway has been proposed and analyzed, but mainly on a theoretical basis. Here, eleven enzyme variants of two different [FeFe]-hydrogenases (CpI and HydA1) with substitutions in the presumptive PT-pathway are examined kinetically, spectroscopically, and crystallographically to provide solid experimental proof for its role in hydrogen-turnover. Targeting key residues of the PT-pathway by site directed mutagenesis significantly alters the pH-activity profile of these variants and in presence of H2 their cofactor is trapped in an intermediate state indicative of precluded proton-transfer. Furthermore, crystal structures coherently explain the individual levels of residual activity, demonstrating e.g. how trapped H2O molecules rescue the interrupted PT-pathway. These features provide conclusive evidence that the targeted positions are indeed vital for catalytic proton-transfer. Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases.,Duan J, Senger M, Esselborn J, Engelbrecht V, Wittkamp F, Apfel UP, Hofmann E, Stripp ST, Happe T, Winkler M Nat Commun. 2018 Nov 9;9(1):4726. doi: 10.1038/s41467-018-07140-x. PMID:30413719[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|