6fzi

From Proteopedia
Jump to navigation Jump to search

Crystal Structure of a Clostridial Dehydrogenase at 2.55 Angstroems ResolutionCrystal Structure of a Clostridial Dehydrogenase at 2.55 Angstroems Resolution

Structural highlights

6fzi is a 4 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

The ubiquitous and highly abundant glycolytic enzyme D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pivotal for the energy and carbon metabolism of most organisms, including human pathogenic bacteria. For bacteria that depend mostly on glycolysis for survival, GAPDH is an attractive target for inhibitor discovery. The availability of high-resolution structures of GAPDH from various pathogenic bacteria is central to the discovery of new antibacterial compounds. We have determined the X-ray crystal structures of two new GAPDH enzymes from Gram-positive bacterial pathogens, Streptococcus pyogenes and Clostridium perfringens. These two structures, and the recent structure of Atopobium vaginae GAPDH, reveal details in the active site that can be exploited for the design of novel inhibitors based on naturally occurring molecules. Two such molecules, anacardic acid and curcumin, have been found to counter bacterial infection in clinical settings, although the cellular targets responsible for their antimicrobial properties remain unknown. We show that both anacardic acid and curcumin inhibit GAPDH from two bacterial pathogens through uncompetitive and non-competitive mechanisms, suggesting GAPDH as a relevant pharmaceutical target for antibacterial development. Inhibition of GAPDH by anacardic acid and curcumin seems to be unrelated to the immune evasion function of pathogenic bacterial GAPDH, since neither natural compound interfere with binding to the human C5a anaphylatoxin.

The Antimicrobials Anacardic Acid and Curcumin Are Not-Competitive Inhibitors of Gram-Positive Bacterial Pathogenic Glyceraldehyde-3-Phosphate Dehydrogenase by a Mechanism Unrelated to Human C5a Anaphylatoxin Binding.,Gomez S, Querol-Garcia J, Sanchez-Barron G, Subias M, Gonzalez-Alsina A, Franco-Hidalgo V, Alberti S, Rodriguez de Cordoba S, Fernandez FJ, Vega MC Front Microbiol. 2019 Feb 26;10:326. doi: 10.3389/fmicb.2019.00326. eCollection, 2019. PMID:30863383[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Gomez S, Querol-Garcia J, Sanchez-Barron G, Subias M, Gonzalez-Alsina A, Franco-Hidalgo V, Alberti S, Rodriguez de Cordoba S, Fernandez FJ, Vega MC. The Antimicrobials Anacardic Acid and Curcumin Are Not-Competitive Inhibitors of Gram-Positive Bacterial Pathogenic Glyceraldehyde-3-Phosphate Dehydrogenase by a Mechanism Unrelated to Human C5a Anaphylatoxin Binding. Front Microbiol. 2019 Feb 26;10:326. doi: 10.3389/fmicb.2019.00326. eCollection, 2019. PMID:30863383 doi:http://dx.doi.org/10.3389/fmicb.2019.00326

6fzi, resolution 2.55Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA