6e21
Joint X-ray/neutron structure of PKAc with products Sr2-ADP and phosphorylated peptide SP20Joint X-ray/neutron structure of PKAc with products Sr2-ADP and phosphorylated peptide SP20
Structural highlights
FunctionKAPCA_MOUSE Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, TRPC1 and VASP. RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). TRPC1 activation by phosphorylation promotes Ca(2+) influx, essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Regulates negatively tight junction (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis. Isoform 2 phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation. May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT).[1] [2] [3] Publication Abstract from PubMedThe question vis-a-vis the chemistry of phosphoryl group transfer catalyzed by protein kinases remains a major challenge. The neutron diffraction structure of the catalytic subunit of cAMP-dependent protein kinase (PKA-C) provides a more complete chemical portrait of key proton interactions at the active site. By using a high-affinity protein kinase substrate (PKS) peptide, we captured the reaction products, dephosphorylated nucleotide [adenosine diphosphate (ADP)] and phosphorylated PKS (pPKS), bound at the active site. In the complex, the phosphoryl group of the peptide is protonated, whereas the carboxyl group of the catalytic Asp(166) is not. Our structure, including conserved waters, shows how the peptide links the distal parts of the cleft together, creating a network that engages the entire molecule. By comparing slow-exchanging backbone amides to those determined by the NMR analysis of PKA-C with ADP and inhibitor peptide (PKI), we identified exchangeable amides that likely distinguish catalytic and inhibited states. Zooming in on protons: Neutron structure of protein kinase A trapped in a product complex.,Gerlits O, Weiss KL, Blakeley MP, Veglia G, Taylor SS, Kovalevsky A Sci Adv. 2019 Mar 20;5(3):eaav0482. doi: 10.1126/sciadv.aav0482. eCollection 2019, Mar. PMID:30906862[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|