6d3y
Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in PlasmaHighly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma
Structural highlights
DiseasePLMN_HUMAN Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:217090. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.[1] [2] [3] [4] [5] [6] [7] [8] FunctionPLMN_HUMAN Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.[9] Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.[10] Publication Abstract from PubMedAntifibrinolytic drugs provide important pharmacological interventions to reduce morbidity and mortality from excessive bleeding during surgery and after trauma. Current drugs used for inhibiting the dissolution of fibrin, the main structural component of blood clots, are associated with adverse events due to lack of potency, high doses, and nonselective inhibition mechanisms. These drawbacks warrant the development of a new generation of highly potent and selective fibrinolysis inhibitors. Here, we use the 14-amino acid backbone-cyclic sunflower trypsin inhibitor-1 scaffold to design a highly potent ( Ki = 0.05 nM) inhibitor of the primary serine protease in fibrinolysis, plasmin. This compound displays a million-fold selectivity over other serine proteases in blood, inhibits fibrinolysis in plasma more effectively than the gold-standard therapeutic inhibitor aprotinin, and is a promising candidate for development of highly specific fibrinolysis inhibitors with reduced side effects. Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma.,Swedberg JE, Wu G, Mahatmanto T, Durek T, Caradoc-Davies TT, Whisstock JC, Law RHP, Craik DJ J Med Chem. 2019 Jan 24;62(2):552-560. doi: 10.1021/acs.jmedchem.8b01139. Epub, 2018 Dec 26. PMID:30520638[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|