6cyh

From Proteopedia
Jump to navigation Jump to search

Hsp90-alpha N-domain bound to NEACAHsp90-alpha N-domain bound to NEACA

Structural highlights

6cyh is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.49Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HS90A_HUMAN Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.[1] [2]

Publication Abstract from PubMed

The hsp90 chaperones govern the function of essential client proteins critical to normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain (NTD) and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP binding pocket of the NTD have anticancer effects, but most bind with similar affinity to cytosolic Hsp90alpha and beta, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP binding pockets of the four paralogs are flanked by three side pockets, termed Sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to Sites 1 and 2 have resulted in the development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of Site 3 are less clear. Previous work identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here, we use NECA and its derivatives to probe the properties of Site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90alpha. Crystal structures reveal that the derivatives extend further into Site 3 of Grp94 compared to their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using Site 3.

NECA derivatives exploit the paralog-specific properties of the Site 3 side pocket of Grp94, the ER Hsp90.,Huck JD, Que NLS, Immormino RM, Shrestha L, Taldone T, Chiosis G, Gewirth DT J Biol Chem. 2019 Sep 9. pii: RA119.009960. doi: 10.1074/jbc.RA119.009960. PMID:31501246[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8525-30. Epub 2005 Jun 3. PMID:15937123 doi:10.1073/pnas.0407294102
  2. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. PMID:11274138 doi:10.1074/jbc.C100055200
  3. Huck JD, Que NLS, Immormino RM, Shrestha L, Taldone T, Chiosis G, Gewirth DT. NECA derivatives exploit the paralog-specific properties of the Site 3 side pocket of Grp94, the ER Hsp90. J Biol Chem. 2019 Sep 9. pii: RA119.009960. doi: 10.1074/jbc.RA119.009960. PMID:31501246 doi:http://dx.doi.org/10.1074/jbc.RA119.009960

6cyh, resolution 1.49Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA