6akr
Crystal structure of the PDE4D catalytic domain in complex with ostholeCrystal structure of the PDE4D catalytic domain in complex with osthole
Structural highlights
DiseasePDE4D_HUMAN Note=Genetic variations in PDE4D might be associated with susceptibility to stroke. PubMed:17006457 states that association with stroke has to be considered with caution. Defects in PDE4D are the cause of acrodysostosis type 2, with or without hormone resistance (ACRDYS2) [MIM:614613. ACRDYS2 is a pleiotropic disorder characterized by skeletal, endocrine, and neurological abnormalities. Skeletal features include brachycephaly, midface hypoplasia with a small upturned nose, brachydactyly, and lumbar spinal stenosis. Endocrine abnormalities include hypothyroidism and hypogonadism in males and irregular menses in females. Developmental disability is a common finding but is variable in severity and can be associated with significant behavioral problems.[1] FunctionPDE4D_HUMAN Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.[2] [3] Publication Abstract from PubMedOveruse of beta2-adrenoceptor agonist bronchodilators evokes receptor desensitization, decreased efficacy, and an increased risk of death in asthma patients. Bronchodilators that do not target beta2-adrenoceptors represent a critical unmet need for asthma management. Here, we characterize the utility of osthole, a coumarin derived from a traditional Chinese medicine, in preclinical models of asthma. In mouse precision-cut lung slices, osthole relaxed preconstricted airways, irrespective of beta2-adrenoceptor desensitization. Osthole administered in murine asthma models attenuated airway hyperresponsiveness, a hallmark of asthma. Osthole inhibited phosphodiesterase 4D (PDE4D) activity to amplify autocrine prostaglandin E2 signaling in airway smooth muscle cells that eventually triggered cAMP/PKA-dependent relaxation of airways. The crystal structure of the PDE4D complexed with osthole revealed that osthole bound to the catalytic site to prevent cAMP binding and hydrolysis. Together, our studies elucidate a specific molecular target and mechanism by which osthole induces airway relaxation. Identification of osthole binding sites on PDE4D will guide further development of bronchodilators that are not subject to tachyphylaxis and would thus avoid beta2-adrenoceptor agonist resistance. Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma.,Wang S, Xie Y, Huo YW, Li Y, Abel PW, Jiang H, Zou X, Jiao HZ, Kuang X, Wolff DW, Huang YG, Casale TB, Panettieri RA Jr, Wei T, Cao Z, Tu Y Sci Signal. 2020 Nov 24;13(659). pii: 13/659/eaax0273. doi:, 10.1126/scisignal.aax0273. PMID:33234690[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|