5zpp

From Proteopedia
Jump to navigation Jump to search

Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 8 at 288 K (3)Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 8 at 288 K (3)

Structural highlights

5zpp is a 2 chain structure with sequence from Arthrobacter globiformis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.81Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PAOX_ARTGO

Publication Abstract from PubMed

In the catalytic reaction of copper amine oxidase, the protein-derived redox cofactor topaquinone (TPQ) is reduced by an amine substrate to an aminoresorcinol form (TPQamr), which is in equilibrium with a semiquinone radical (TPQsq). The transition from TPQamr to TPQsq is an endothermic process, accompanied by a significant conformational change of the cofactor. We employed the humid air and glue-coating (HAG) method to capture the equilibrium mixture of TPQamr and TPQsq in noncryocooled crystals of the enzyme from Arthrobacter globiformis and found that the equilibrium shifts more toward TPQsq in crystals than in solution. Thermodynamic analyses of the temperature-dependent equilibrium also revealed that the transition to TPQsq is entropy-driven both in crystals and in solution, giving the thermodynamic parameters that led to experimental determination of the crystal packing effect. Furthermore, we demonstrate that the binding of product aldehyde to the hydrophobic pocket in the active site produces various equilibrium states among two forms of the product Schiff-base, TPQamr, and TPQsq, in a pH-dependent manner. The temperature-controlled HAG method provides a technique for thermodynamic analysis of conformational changes occurring in protein crystals that are hardly scrutinized by conventional cryogenic X-ray crystallography.

In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase.,Murakawa T, Baba S, Kawano Y, Hayashi H, Yano T, Kumasaka T, Yamamoto M, Tanizawa K, Okajima T Proc Natl Acad Sci U S A. 2018 Dec 18. pii: 1811837116. doi:, 10.1073/pnas.1811837116. PMID:30563857[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Murakawa T, Baba S, Kawano Y, Hayashi H, Yano T, Kumasaka T, Yamamoto M, Tanizawa K, Okajima T. In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase. Proc Natl Acad Sci U S A. 2018 Dec 18. pii: 1811837116. doi:, 10.1073/pnas.1811837116. PMID:30563857 doi:http://dx.doi.org/10.1073/pnas.1811837116

5zpp, resolution 1.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA