5zhy
Structural characterization of the HCoV-229E fusion coreStructural characterization of the HCoV-229E fusion core
Structural highlights
FunctionSPIKE_CVH22 S1 region attaches the virion to the cell membrane by interacting with human ANPEP/aminopeptidase N, initiating the infection. Binding to the receptor probably induces conformational changes in the S glycoprotein unmasking the fusion peptide of S2 region and activating membranes fusion. S2 region belongs to the class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) regions assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes (By similarity). Publication Abstract from PubMedHCoV-229E spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This protein is composed of an N-terminal receptor-binding domain (S1) and a C-terminal trans-membrane fusion domain (S2). S2 contains a highly conserved heptad repeat 1 and 2 (HR1 and HR2). In this study, the HRs sequences were designed and connected with a flexible linker. The recombinant fusion core protein was crystallized and its structure was solved at a resolution of 2.45A. Then we characterized the binding of HR1s and HR2s via both sequence alignment and structural analysis. The overall structures, especially the residues in some positions of HR2 are highly conserved. Fourteen hydrophobic and three polar residues from each HR1 peptide are packed in layers at the coiled-coil interface. These core amino acids can be grouped into seven heptad repeats. Analysis of hydrophobic and hydrophilic interactions between HR2 helix and HR1 helices, shows that the HR1 and HR2 polypeptides are highly complementary in both shape and chemical properties. Furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting membrane fusion, a crucial step of HCoV-229E infection. Structural characterization of the HCoV-229E fusion core.,Zhang W, Zheng Q, Yan M, Chen X, Yang H, Zhou W, Rao Z Biochem Biophys Res Commun. 2018 Mar 4;497(2):705-712. doi:, 10.1016/j.bbrc.2018.02.136. Epub 2018 Feb 16. PMID:29458023[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|