5yvb

From Proteopedia
Jump to navigation Jump to search

Structure of CaMKK2 in complex with CKI-011Structure of CaMKK2 in complex with CKI-011

Structural highlights

5yvb is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.02Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KKCC2_HUMAN Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching.[1] [2] [3] [4]

Publication Abstract from PubMed

CaMKK2 (calcium/calmodulin dependent protein kinase kinase 2) is a serine/threonine protein kinase that regulates phosphorylation of CaM kinases (CaMKs) such as CaMKI, CaMKIV, and AMP-activated protein kinase (AMPK). From a pathological perspective, CaMKK2 plays a role in obesity, diabetes, and prostate cancer. Therefore, CaMKK2 is an attractive target protein for drug design. Here, we tried to find new CaMKK2 inhibitors by using ligand-based and structure-based drug design approaches. From the in silico hit compounds, we identified new inhibitors by using a CaMKK2 kinase assay. We solved X-ray crystallography structures of the CaMKK2-inhibitor complexes and performed Fragment Molecular Orbital (FMO) calculations to analyze the protein-ligand interactions, identify the key residues in inhibitor binding, and quantitatively measure their contribution. We experimentally determined five CaMKK2-inhibitor structures and calculated the binding energies of the inhibitors by the FMO method plus MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) approach. The results showed a high correlation (R = -0.89) between experimentally measured inhibitory activity (pIC50) and the predicted ligand binding energy. We then quantitatively evaluated the contribution of each binding site residue in CaMKK2 by the IFIE (Inter-fragment Interaction Energy)/PIEDA (Pair Interaction Energy Decomposition Analysis) method. The IFIE values indicated that Lys194 and Glu236, which formed hydrogen bonds with the carboxylate groups of the inhibitors, were key residues for ligand binding. PIEDA revealed that the dispersion interaction of inhibitors with hydrophobic residues, such as Ile171, Phe267, and Leu319, contributed highly to ligand binding; we considered that this was due to CH-pi interactions with methoxy groups and/or aromatic rings contained in our CaMKK2 inhibitor. These results from the quantitative interaction analysis by the FMO method are useful not only for future CaMMK2 inhibitor development but for application of the FMO method to in silico drug design.

Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method.,Takaya D, Niwa H, Mikuni J, Nakamura K, Handa N, Tanaka A, Yokoyama S, Honma T J Mol Graph Model. 2020 Apr 10;99:107599. doi: 10.1016/j.jmgm.2020.107599. PMID:32348940[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY. Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity. J Biol Chem. 2001 Aug 17;276(33):31113-23. Epub 2001 Jun 6. PMID:11395482 doi:http://dx.doi.org/10.1074/jbc.M011720200
  2. Ishikawa Y, Tokumitsu H, Inuzuka H, Murata-Hori M, Hosoya H, Kobayashi R. Identification and characterization of novel components of a Ca2+/calmodulin-dependent protein kinase cascade in HeLa cells. FEBS Lett. 2003 Aug 28;550(1-3):57-63. PMID:12935886
  3. Hsu LS, Tsou AP, Chi CW, Lee CH, Chen JY. Cloning, expression and chromosomal localization of human Ca2+/calmodulin-dependent protein kinase kinase. J Biomed Sci. 1998;5(2):141-9. PMID:9662074
  4. Cao W, Sohail M, Liu G, Koumbadinga GA, Lobo VG, Xie J. Differential effects of PKA-controlled CaMKK2 variants on neuronal differentiation. RNA Biol. 2011 Nov-Dec;8(6):1061-72. doi: 10.4161/rna.8.6.16691. Epub 2011 Nov 1. PMID:21957496 doi:http://dx.doi.org/10.4161/rna.8.6.16691
  5. Takaya D, Niwa H, Mikuni J, Nakamura K, Handa N, Tanaka A, Yokoyama S, Honma T. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. J Mol Graph Model. 2020 Apr 10;99:107599. doi: 10.1016/j.jmgm.2020.107599. PMID:32348940 doi:http://dx.doi.org/10.1016/j.jmgm.2020.107599

5yvb, resolution 2.02Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA