5tp1

From Proteopedia
Jump to navigation Jump to search

The structure of the C-terminus of virulence protein IncE from Chlamydia trachomatis bound to Mus musculus SNX5-PX domainThe structure of the C-terminus of virulence protein IncE from Chlamydia trachomatis bound to Mus musculus SNX5-PX domain

Structural highlights

5tp1 is a 8 chain structure with sequence from Chlamydia trachomatis D/UW-3/CX and Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.31Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SNX5_MOUSE Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol lipids. Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC). Does not have in vitro vesicle-to-membrane remodeling activity. Involved in retrograde transport of lysosomal enzyme receptor IGF2R. May function as link between endosomal transport vesicles and dynactin. Plays a role in the internalization of EGFR after EGF stimulation. Involved in EGFR endosomal sorting and degradation; the function involves PIP5K1C and is retromer-independent. Together with PIP5K1C facilitates HGS interaction with ubiquitinated EGFR, which initiates EGFR sorting to intraluminal vesicles (ILVs) of the multivesicular body for subsequent lysosomal degradation. Involved in E-cadherin sorting and degradation; inhibits PIP5K1C-mediated E-cadherin degradation (By similarity). Plays a role in macropinocytosis (PubMed:18854019).[UniProtKB:Q9Y5X3][1]

Publication Abstract from PubMed

Chlamydia trachomatis is an obligate intracellular pathogen that resides in a membrane-bound compartment, the inclusion. The bacteria secrete a unique class of proteins, Incs, which insert into the inclusion membrane and modulate the host-bacterium interface. We previously reported that IncE binds specifically to the Sorting Nexin 5 Phox domain (SNX5-PX) and disrupts retromer trafficking. Here, we present the crystal structure of the SNX5-PX:IncE complex, showing IncE bound to a unique and highly conserved hydrophobic groove on SNX5. Mutagenesis of the SNX5-PX:IncE binding surface disrupts a previously unsuspected interaction between SNX5 and the cation-independent mannose-6-phosphate receptor (CI-MPR). Addition of IncE peptide inhibits the interaction of CI-MPR with SNX5. Finally, C. trachomatis infection interferes with the SNX5:CI-MPR interaction, suggesting that IncE and CI-MPR are dependent on the same binding surface on SNX5. Our results provide new insights into retromer assembly and underscore the power of using pathogens to discover disease-related cell biology.

Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction.,Elwell CA, Czudnochowski N, von Dollen J, Johnson JR, Nakagawa R, Mirrashidi K, Krogan NJ, Engel JN, Rosenberg OS Elife. 2017 Mar 2;6. pii: e22709. doi: 10.7554/eLife.22709. PMID:28252385[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lim JP, Wang JT, Kerr MC, Teasdale RD, Gleeson PA. A role for SNX5 in the regulation of macropinocytosis. BMC Cell Biol. 2008 Oct 14;9:58. doi: 10.1186/1471-2121-9-58. PMID:18854019 doi:10.1186/1471-2121-9-58
  2. Elwell CA, Czudnochowski N, von Dollen J, Johnson JR, Nakagawa R, Mirrashidi K, Krogan NJ, Engel JN, Rosenberg OS. Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. Elife. 2017 Mar 2;6. pii: e22709. doi: 10.7554/eLife.22709. PMID:28252385 doi:http://dx.doi.org/10.7554/eLife.22709

5tp1, resolution 2.31Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA