5tkf
Neurospora crassa polysaccharide monooxygenase 2 high mannosylationNeurospora crassa polysaccharide monooxygenase 2 high mannosylation
Structural highlights
FunctionLPMO_NEUCR Catalyzes the oxidative cleavage of glycosidic bonds in cellulosic substrates via a copper-dependent mechanism (PubMed:22004347, PubMed:22188218, PubMed:24350607, PubMed:31431506). In the presence of an exogenous reductant ascorbic acid, degrades phosphoric acid swollen cellulose (PASC) to cello-oligosaccharides and 4-ketoaldoses, the end products oxidized at the non-reducing end (PubMed:22004347, PubMed:22188218, PubMed:24350607). Somewhat active toward tamarind xyloglucan and konjac glucomannan, with improved activity with glucomannan in the presence of PASC (PubMed:31431506). H(2)O(2) is able to substitute for O(2) in reactions with PASC, xyloglucan and glucomannan (PubMed:31431506). Very weak activity on cellopentaose (PubMed:31431506). No activity with birchwood xylan or ivory nut mannan (PubMed:31431506). Disrupts plant cell wall polysaccharide substrates, such as recalcitrant crystalline cellulose (Probable).[1] [2] [3] [4] Publication Abstract from PubMedLytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bonds via an oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 from Neurospora crassa (NcPMO-2) was heterologously expressed in Pichia pastoris to facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressing NcPMO-2 from a glycoengineered strain of P. pastoris and by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 A) X-ray diffraction data collection at 100 K and the production of a large NcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 A resolution. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction.,O'Dell WB, Swartz PD, Weiss KL, Meilleur F Acta Crystallogr F Struct Biol Commun. 2017 Feb 1;73(Pt 2):70-78. doi:, 10.1107/S2053230X16020318. Epub 2017 Jan 19. PMID:28177316[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|