5oer

From Proteopedia
Jump to navigation Jump to search

Hen egg-white lysozyme refined against 5000 9 keV diffraction patternsHen egg-white lysozyme refined against 5000 9 keV diffraction patterns

Structural highlights

5oer is a 1 chain structure with sequence from Gallus gallus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]

Publication Abstract from PubMed

Serial femtosecond crystallography at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems prone to radiation damage. However, de novo structure determination, i.e., without prior structural knowledge, is complicated by the inherent inaccuracy of serial femtosecond crystallography data. By its very nature, serial femtosecond crystallography data collection entails shot-to-shot fluctuations in X-ray wavelength and intensity as well as variations in crystal size and quality that must be averaged out. Hence, to obtain accurate diffraction intensities for de novo phasing, large numbers of diffraction patterns are required, and, concomitantly large volumes of sample and long X-ray free-electron laser beamtimes. Here we show that serial femtosecond crystallography data collected using simultaneous two-colour X-ray free-electron laser pulses can be used for multiple wavelength anomalous dispersion phasing. The phase angle determination is significantly more accurate than for single-colour phasing. We anticipate that two-colour multiple wavelength anomalous dispersion phasing will enhance structure determination of difficult-to-phase proteins at X-ray free-electron lasers.

Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability.,Gorel A, Motomura K, Fukuzawa H, Doak RB, Grunbein ML, Hilpert M, Inoue I, Kloos M, Kovacsova G, Nango E, Nass K, Roome CM, Shoeman RL, Tanaka R, Tono K, Joti Y, Yabashi M, Iwata S, Foucar L, Ueda K, Barends TRM, Schlichting I Nat Commun. 2017 Oct 27;8(1):1170. doi: 10.1038/s41467-017-00754-7. PMID:29079797[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
  2. Gorel A, Motomura K, Fukuzawa H, Doak RB, Grunbein ML, Hilpert M, Inoue I, Kloos M, Kovacsova G, Nango E, Nass K, Roome CM, Shoeman RL, Tanaka R, Tono K, Joti Y, Yabashi M, Iwata S, Foucar L, Ueda K, Barends TRM, Schlichting I. Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability. Nat Commun. 2017 Oct 27;8(1):1170. doi: 10.1038/s41467-017-00754-7. PMID:29079797 doi:http://dx.doi.org/10.1038/s41467-017-00754-7

5oer, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA