5np8

From Proteopedia
Jump to navigation Jump to search

PGK1 in complex with CRT0063465 (3-[2-(4-bromophenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-6-yl]propanoic acid)PGK1 in complex with CRT0063465 (3-[2-(4-bromophenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-6-yl]propanoic acid)

Structural highlights

5np8 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PGK1_HUMAN Defects in PGK1 are the cause of phosphoglycerate kinase 1 deficiency (PGK1D) [MIM:300653. It is a condition with a highly variable clinical phenotype that includes hemolytic anemia, rhabdomyolysis, myopathy and neurologic involvement. Patients can express one or more of these manifestations.[1] [2] [3] [4] [5] [6] [7] [8] [9]

Function

PGK1_HUMAN In addition to its role as a glycolytic enzyme, it seems that PGK-1 acts as a polymerase alpha cofactor protein (primer recognition protein).

Publication Abstract from PubMed

Telomere signaling and metabolic dysfunction are hallmarks of cell aging. New agents targeting these processes might provide therapeutic opportunities, including chemoprevention strategies against cancer predisposition. We report identification and characterization of a pyrazolopyrimidine compound series identified from screens focused on cell immortality and whose targets are glycolytic kinase PGK1 and oxidative stress sensor DJ1. We performed structure-activity studies on the series to develop a photoaffinity probe to deconvolute the cellular targets. In vitro binding and structural analyses confirmed these targets, suggesting that PGK1/DJ1 interact, which we confirmed by immunoprecipitation. Glucose homeostasis and oxidative stress are linked to telomere signaling and exemplar compound CRT0063465 blocked hypoglycemic telomere shortening. Intriguingly, PGK1 and DJ1 bind to TRF2 and telomeric DNA. Compound treatment modulates these interactions and also affects Shelterin complex composition, while conferring cellular protection from cytotoxicity due to bleomycin and desferroxamine. These results demonstrate therapeutic potential of the compound series.

A Novel Pyrazolopyrimidine Ligand of Human PGK1 and Stress Sensor DJ1 Modulates the Shelterin Complex and Telomere Length Regulation.,Bilsland AE, Liu Y, Turnbull A, Sumpton D, Stevenson K, Cairney CJ, Boyd SM, Roffey J, Jenkinson D, Keith WN Neoplasia. 2019 Aug 8;21(9):893-907. doi: 10.1016/j.neo.2019.07.008. PMID:31401411[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yoshida A, Twele TW, Dave V, Beutler E. Molecular abnormality of a phosphoglycerate kinase variant (PGK-Alabama). Blood Cells Mol Dis. 1995;21(3):179-81. PMID:8673469 doi:S1079-9796(85)70020-4
  2. Cohen-Solal M, Valentin C, Plassa F, Guillemin G, Danze F, Jaisson F, Rosa R. Identification of new mutations in two phosphoglycerate kinase (PGK) variants expressing different clinical syndromes: PGK Creteil and PGK Amiens. Blood. 1994 Aug 1;84(3):898-903. PMID:8043870
  3. Ookawara T, Dave V, Willems P, Martin JJ, de Barsy T, Matthys E, Yoshida A. Retarded and aberrant splicings caused by single exon mutation in a phosphoglycerate kinase variant. Arch Biochem Biophys. 1996 Mar 1;327(1):35-40. PMID:8615693 doi:http://dx.doi.org/10.1006/abbi.1996.0089
  4. Valentin C, Birgens H, Craescu CT, Brodum-Nielsen K, Cohen-Solal M. A phosphoglycerate kinase mutant (PGK Herlev; D285V) in a Danish patient with isolated chronic hemolytic anemia: mechanism of mutation and structure-function relationships. Hum Mutat. 1998;12(4):280-7. PMID:9744480 doi:<280::AID-HUMU10>3.0.CO;2-V 10.1002/(SICI)1098-1004(1998)12:4<280::AID-HUMU10>3.0.CO;2-V
  5. Maeda M, Yoshida A. Molecular defect of a phosphoglycerate kinase variant (PGK-Matsue) associated with hemolytic anemia: Leu----Pro substitution caused by T/A----C/G transition in exon 3. Blood. 1991 Mar 15;77(6):1348-52. PMID:2001457
  6. Maeda M, Bawle EV, Kulkarni R, Beutler E, Yoshida A. Molecular abnormalities of a phosphoglycerate kinase variant generated by spontaneous mutation. Blood. 1992 May 15;79(10):2759-62. PMID:1586722
  7. Fujii H, Kanno H, Hirono A, Shiomura T, Miwa S. A single amino acid substitution (157 Gly----Val) in a phosphoglycerate kinase variant (PGK Shizuoka) associated with chronic hemolysis and myoglobinuria. Blood. 1992 Mar 15;79(6):1582-5. PMID:1547346
  8. Fujii H, Chen SH, Akatsuka J, Miwa S, Yoshida A. Use of cultured lymphoblastoid cells for the study of abnormal enzymes: molecular abnormality of a phosphoglycerate kinase variant associated with hemolytic anemia. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2587-90. PMID:6941312
  9. Fujii H, Yoshida A. Molecular abnormality of phosphoglycerate kinase-Uppsala associated with chronic nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5461-5. PMID:6933565
  10. Bilsland AE, Liu Y, Turnbull A, Sumpton D, Stevenson K, Cairney CJ, Boyd SM, Roffey J, Jenkinson D, Keith WN. A Novel Pyrazolopyrimidine Ligand of Human PGK1 and Stress Sensor DJ1 Modulates the Shelterin Complex and Telomere Length Regulation. Neoplasia. 2019 Aug 8;21(9):893-907. doi: 10.1016/j.neo.2019.07.008. PMID:31401411 doi:http://dx.doi.org/10.1016/j.neo.2019.07.008

5np8, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA