Uba1 in complex with Ub-ABPA3 covalent adductUba1 in complex with Ub-ABPA3 covalent adduct

Structural highlights

5l6h is a 5 chain structure with sequence from Saccharomyces cerevisiae and Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:, , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RS31_YEAST Ubiquitin: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, and DNA-damage responses. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling (By similarity). 40S ribosomal protein S31: Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel.[1]

Publication Abstract from PubMed

Targeting the activating enzymes (E1) of ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) has emerged as a promising anti-cancer strategy, possibly overcoming the ineffectiveness of proteasome inhibitors against solid tumors. Here, we report crystal structures of the yeast ubiquitin E1 (Uba1) with three adenosyl sulfamate inhibitors exhibiting different E1 specificities, which are all covalently linked to ubiquitin. The structures illustrate how the chemically diverse inhibitors are accommodated within the adenylation active site. When compared with the previously reported structures of various E1 enzymes, our structures provide the basis of the preferences of these inhibitors for different Ub/Ubl-activating enzymes. In vitro inhibition assays and molecular dynamics simulations validated the specificities of the inhibitors as deduced from the structures. Taken together, the structures establish a framework for the development of additional compounds targeting E1 enzymes, which will display higher potency and selectivity.

Dissecting the Specificity of Adenosyl Sulfamate Inhibitors Targeting the Ubiquitin-Activating Enzyme.,Misra M, Kuhn M, Lobel M, An H, Statsyuk AV, Sotriffer C, Schindelin H Structure. 2017 Jul 5;25(7):1120-1129.e3. doi: 10.1016/j.str.2017.05.001. Epub, 2017 Jun 1. PMID:28578874[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011 Dec 16;334(6062):1524-9. Epub 2011 Nov 17. PMID:22096102 doi:10.1126/science.1212642
  2. Misra M, Kuhn M, Lobel M, An H, Statsyuk AV, Sotriffer C, Schindelin H. Dissecting the Specificity of Adenosyl Sulfamate Inhibitors Targeting the Ubiquitin-Activating Enzyme. Structure. 2017 Jul 5;25(7):1120-1129.e3. doi: 10.1016/j.str.2017.05.001. Epub, 2017 Jun 1. PMID:28578874 doi:http://dx.doi.org/10.1016/j.str.2017.05.001

5l6h, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA