5k9a

From Proteopedia
Jump to navigation Jump to search

Sortase A from Corynebacterium diphtheriaeSortase A from Corynebacterium diphtheriae

Structural highlights

5k9a is a 1 chain structure with sequence from Corynebacterium diphtheriae NCTC 13129. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q6NF82_CORDI

Publication Abstract from PubMed

Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA(2M)), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA(2M) synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA(2M) sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA(2M) can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.,Chang C, Amer BR, Osipiuk J, McConnell SA, Huang IH, Hsieh V, Fu J, Nguyen HH, Muroski J, Flores E, Ogorzalek Loo RR, Loo JA, Putkey JA, Joachimiak A, Das A, Clubb RT, Ton-That H Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5477-E5486. doi:, 10.1073/pnas.1800954115. Epub 2018 May 29. PMID:29844180[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Chang C, Amer BR, Osipiuk J, McConnell SA, Huang IH, Hsieh V, Fu J, Nguyen HH, Muroski J, Flores E, Ogorzalek Loo RR, Loo JA, Putkey JA, Joachimiak A, Das A, Clubb RT, Ton-That H. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5477-E5486. doi:, 10.1073/pnas.1800954115. Epub 2018 May 29. PMID:29844180 doi:http://dx.doi.org/10.1073/pnas.1800954115

5k9a, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA