5jeo

From Proteopedia
Jump to navigation Jump to search

Phosphorylated Rotavirus NSP1 in complex with IRF-3Phosphorylated Rotavirus NSP1 in complex with IRF-3

Structural highlights

5jeo is a 2 chain structure with sequence from Homo sapiens and Rotavirus A. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.719Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NSP1_ROTS4 Plays a role in the inhibition of host innate immunity by inducing the degradation of key host factors required to activate interferon production such as IRF3, IRF5 or IRF7. Associates with components of cullin RING ligases (CRLs) including CUL1 or CUL3, which are essential multisubunit ubiquitination complexes, to modulate their activities.[HAMAP-Rule:MF_04088][1] [2] [3] [4] [5]

Publication Abstract from PubMed

Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-beta) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.

Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins.,Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):E3403-12. doi:, 10.1073/pnas.1603269113. Epub 2016 Jun 2. PMID:27302953[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Barro M, Patton JT. Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4114-9. PMID:15741273 doi:10.1073/pnas.0408376102
  2. Graff JW, Ewen J, Ettayebi K, Hardy ME. Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability. J Gen Virol. 2007 Feb;88(Pt 2):613-620. PMID:17251580 doi:10.1099/vir.0.82255-0
  3. Barro M, Patton JT. Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol. 2007 May;81(9):4473-81. PMID:17301153 doi:10.1128/JVI.02498-06
  4. Lutz LM, Pace CR, Arnold MM. Rotavirus NSP1 Associates with Components of the Cullin RING Ligase Family of E3 Ubiquitin Ligases. J Virol. 2016 Jun 10;90(13):6036-48. PMID:27099313 doi:10.1128/JVI.00704-16
  5. Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):E3403-12. doi:, 10.1073/pnas.1603269113. Epub 2016 Jun 2. PMID:27302953 doi:http://dx.doi.org/10.1073/pnas.1603269113
  6. Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):E3403-12. doi:, 10.1073/pnas.1603269113. Epub 2016 Jun 2. PMID:27302953 doi:http://dx.doi.org/10.1073/pnas.1603269113

5jeo, resolution 1.72Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA