5gmy

From Proteopedia
Jump to navigation Jump to search

Crystal structure of the Archaeoglobus fulgidus oligosaccharyltransferase (O29867_ARCFU) tethered with an acceptor peptide containing the NVT sequon via a disulfide bondCrystal structure of the Archaeoglobus fulgidus oligosaccharyltransferase (O29867_ARCFU) tethered with an acceptor peptide containing the NVT sequon via a disulfide bond

Structural highlights

5gmy is a 2 chain structure with sequence from Archaeoglobus fulgidus DSM 4304 and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AGLB3_ARCFU Oligosaccharyl transferase (OST) that catalyzes the initial transfer of a defined glycan (a glucose-linked heptasaccharide composed of 3 Glc, 2 Man, 2 Gal and a sulfate for A.fulgidus AglB-L) from the lipid carrier dolichol-monophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation.[1] [2] [3]

Publication Abstract from PubMed

Oligosaccharyltransferase (OST) transfers an oligosaccharide chain to the Asn residue in the Asn-X-Ser/Thr sequon in proteins, where X is not proline. A sequon was tethered to an archaeal OST enzyme via a disulfide bond. The positions of the cysteine residues in the OST protein and the sequon-containing acceptor peptide were selected by reference to the eubacterial OST structure in a noncovalent complex with an acceptor peptide. We determined the crystal structure of the cross-linked OST-sequon complex. The Ser/Thr-binding pocket recognizes the Thr residue in the sequon, and the catalytic structure termed the "carboxylate dyad" interacted with the Asn residue. Thus, the recognition and the catalytic mechanism of the sequon are conserved between the archaeal and eubacterial OSTs. We found that the tethered peptides in the complex were efficiently glycosylated in the presence of the oligosaccharide donor. The stringent requirements are greatly relaxed in the cross-linked state. The two conserved acidic residues in the catalytic structure were each dispensable, although the double mutation abolished the activity. A Gln residue at the Asn position in the sequon functioned as an acceptor, and the hydroxy group at position +2 was not required. In the standard assay using short free peptides, strong amino acid preferences were observed at the X position, but the preferences, except for Pro, completely disappeared in the cross-linked state. By skipping the initial binding process and stabilizing the complex state, the catalytically competent cross-linked complex offers a unique system for studying the oligosaccharyl transfer reaction.

Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex.,Matsumoto S, Taguchi Y, Shimada A, Igura M, Kohda D Biochemistry. 2017 Jan 31;56(4):602-611. doi: 10.1021/acs.biochem.6b01089. Epub, 2017 Jan 17. PMID:27997792[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Matsumoto S, Shimada A, Nyirenda J, Igura M, Kawano Y, Kohda D. Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Proc Natl Acad Sci U S A. 2013 Oct 14. PMID:24127570 doi:http://dx.doi.org/10.1073/pnas.1309777110
  2. Taguchi Y, Fujinami D, Kohda D. Comparative Analysis of Archaeal Lipid-linked Oligosaccharides That Serve as Oligosaccharide Donors for Asn Glycosylation. J Biol Chem. 2016 May 20;291(21):11042-54. PMID:27015803 doi:10.1074/jbc.M115.713156
  3. Matsumoto S, Taguchi Y, Shimada A, Igura M, Kohda D. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex. Biochemistry. 2017 Jan 31;56(4):602-611. doi: 10.1021/acs.biochem.6b01089. Epub, 2017 Jan 17. PMID:27997792 doi:http://dx.doi.org/10.1021/acs.biochem.6b01089
  4. Matsumoto S, Taguchi Y, Shimada A, Igura M, Kohda D. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex. Biochemistry. 2017 Jan 31;56(4):602-611. doi: 10.1021/acs.biochem.6b01089. Epub, 2017 Jan 17. PMID:27997792 doi:http://dx.doi.org/10.1021/acs.biochem.6b01089

5gmy, resolution 3.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA