5d7e

From Proteopedia
Jump to navigation Jump to search

Crystal structure of Taf14 YEATS domain in complex with H3K9acCrystal structure of Taf14 YEATS domain in complex with H3K9ac

Structural highlights

5d7e is a 2 chain structure with sequence from Saccharomyces cerevisiae and Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TAF14_YEAST Functions as a component of the DNA-binding general transcription factor complex TFIID, the RNA polymerase II associated general transcription factor complex TFIIF, and the chromatin-remodeling complex SWI/SNF. Binding of TFIID to a promoter (with or without TATA element) is the initial step in preinitiation complex (PIC) formation. TFIID plays a key role in the regulation of gene expression by RNA polymerase II through different activities such as transcription activator interaction, core promoter recognition and selectivity, TFIIA and TFIIB interaction, chromatin modification (histone acetylation by TAF1), facilitation of DNA opening and initiation of transcription. TFIIF is essential for the initiation of transcription by RNA polymerase II. TFIIF functions include the recruitment of RNA polymerase II to the promoter bound DNA-TBP-TFIIB complex, decreasing the affinity of RNA polymerase II for non-specific DNA, allowing for the subsequent recruitment of TFIIE and TFIIH, and facilitating RNA polymerase II elongation. The TAF14 subunit has stimulatory activity. Component of the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors. Component of the histone acetyltransferase NuA3 complex, that acetylates Lys-14 of histone H3. Recruitment of NuA3 to nucleosomes requires methylated histone H3. In conjunction with the FACT complex, NuA3 may be involved in transcriptional regulation.[1] [2] [3] [4] [5] [6]

Publication Abstract from PubMed

The YEATS domain, found in a number of chromatin-associated proteins, has recently been shown to have the capacity to bind histone lysine acetylation. Here, we show that the YEATS domain of Taf14, a member of key transcriptional and chromatin-modifying complexes in yeast, is a selective reader of histone H3 Lys9 acetylation (H3K9ac). Structural analysis reveals that acetylated Lys9 is sandwiched in an aromatic cage formed by F62 and W81. Disruption of this binding in cells impairs gene transcription and the DNA damage response. Our findings establish a highly conserved acetyllysine reader function for the YEATS domain protein family and highlight the significance of this interaction for Taf14.

Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response.,Shanle EK, Andrews FH, Meriesh H, McDaniel SL, Dronamraju R, DiFiore JV, Jha D, Wozniak GG, Bridgers JB, Kerschner JL, Krajewski K, Martin GM, Morrison AJ, Kutateladze TG, Strahl BD Genes Dev. 2015 Sep 1;29(17):1795-800. doi: 10.1101/gad.269977.115. PMID:26341557[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev. 1998 Jun;62(2):465-503. PMID:9618449
  2. Sanders SL, Weil PA. Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex. J Biol Chem. 2000 May 5;275(18):13895-900. PMID:10788514
  3. Sanders SL, Garbett KA, Weil PA. Molecular characterization of Saccharomyces cerevisiae TFIID. Mol Cell Biol. 2002 Aug;22(16):6000-13. PMID:12138208
  4. Martinez E. Multi-protein complexes in eukaryotic gene transcription. Plant Mol Biol. 2002 Dec;50(6):925-47. PMID:12516863
  5. Martens JA, Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev. 2003 Apr;13(2):136-42. PMID:12672490
  6. Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, Allis CD. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell. 2006 Dec 8;24(5):785-96. PMID:17157260 doi:http://dx.doi.org/10.1016/j.molcel.2006.10.026
  7. Shanle EK, Andrews FH, Meriesh H, McDaniel SL, Dronamraju R, DiFiore JV, Jha D, Wozniak GG, Bridgers JB, Kerschner JL, Krajewski K, Martin GM, Morrison AJ, Kutateladze TG, Strahl BD. Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response. Genes Dev. 2015 Sep 1;29(17):1795-800. doi: 10.1101/gad.269977.115. PMID:26341557 doi:http://dx.doi.org/10.1101/gad.269977.115

5d7e, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA