5b41

From Proteopedia
Jump to navigation Jump to search

Crystal structure of VDR-LBD complexed with 2-methylidene-19-nor-1a,25-dihydroxyvitamin D3Crystal structure of VDR-LBD complexed with 2-methylidene-19-nor-1a,25-dihydroxyvitamin D3

Structural highlights

5b41 is a 2 chain structure with sequence from Homo sapiens and Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.89Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

VDR_RAT Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.[1]

Publication Abstract from PubMed

Vitamin D receptor (VDR) controls the expression of numerous genes through the conformational change caused by binding 1alpha,25-dihydroxyvitamin D3. Helix 12 in the ligand-binding domain (LBD) is key to regulating VDR activation. The structures of apo VDR-LBD and the VDR-LBD/antagonist complex are unclear. Here, we reveal their unprecedented structures in solution using a hybrid method combining small-angle X-ray scattering and molecular dynamics simulations. In apo rat VDR-LBD, helix 12 is partially unraveled, and it is positioned around the canonical active position and fluctuates. Helix 11 greatly bends toward the outside at Q396, creating a kink. In the rat VDR-LBD/antagonist complex, helix 12 does not generate the activation function 2 surface, and loop 11-12 is remarkably flexible compared to that in the apo rat VDR-LBD. On the basis of these structural insights, we propose a "folding-door model" to describe the mechanism of agonism/antagonism of VDR-LBD.

Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics.,Anami Y, Shimizu N, Ekimoto T, Egawa D, Itoh T, Ikeguchi M, Yamamoto K J Med Chem. 2016 Sep 8;59(17):7888-900. doi: 10.1021/acs.jmedchem.6b00682. Epub, 2016 Aug 26. PMID:27535484[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Vanhooke JL, Tadi BP, Benning MM, Plum LA, DeLuca HF. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007 Apr 15;460(2):161-5. Epub 2006 Dec 12. PMID:17227670 doi:10.1016/j.abb.2006.11.029
  2. Anami Y, Shimizu N, Ekimoto T, Egawa D, Itoh T, Ikeguchi M, Yamamoto K. Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics. J Med Chem. 2016 Sep 8;59(17):7888-900. doi: 10.1021/acs.jmedchem.6b00682. Epub, 2016 Aug 26. PMID:27535484 doi:http://dx.doi.org/10.1021/acs.jmedchem.6b00682

5b41, resolution 1.89Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA