5aul

From Proteopedia
Jump to navigation Jump to search

PI3K p85 C-terminal SH2 domain/CD28-derived peptide complexPI3K p85 C-terminal SH2 domain/CD28-derived peptide complex

Structural highlights

5aul is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.1Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

P85A_HUMAN Binds to activated (phosphorylated) protein-Tyr kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues. Plays an important role in signaling in response to FGFR1, FGFR2, FGFR3, FGFR4, KITLG/SCF, KIT, PDGFRA and PDGFRB. Likewise, plays a role in ITGB2 signaling.[1] [2] [3]

Publication Abstract from PubMed

Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases.

Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins.,Inaba S, Numoto N, Ogawa S, Morii H, Ikura T, Abe R, Ito N, Oda M J Biol Chem. 2017 Jan 20;292(3):1052-1060. doi: 10.1074/jbc.M116.755173. Epub, 2016 Dec 6. PMID:27927989[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Vainikka S, Joukov V, Wennstrom S, Bergman M, Pelicci PG, Alitalo K. Signal transduction by fibroblast growth factor receptor-4 (FGFR-4). Comparison with FGFR-1. J Biol Chem. 1994 Jul 15;269(28):18320-6. PMID:7518429
  2. Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID:17626883 doi:317/5835/239
  3. Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang CH, Kinzler KW, Vogelstein B, Amzel LM. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16996-7001. Epub 2009 Sep 23. PMID:19805105
  4. Inaba S, Numoto N, Ogawa S, Morii H, Ikura T, Abe R, Ito N, Oda M. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins. J Biol Chem. 2017 Jan 20;292(3):1052-1060. doi: 10.1074/jbc.M116.755173. Epub, 2016 Dec 6. PMID:27927989 doi:http://dx.doi.org/10.1074/jbc.M116.755173

5aul, resolution 1.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA